Rupert P M Jagode, Alexander Scrimgeour, Florian Schlaghaufer, Johannes Fischer, Alkwin Slenczka
{"title":"超流氦液滴中酞菁电子带原点线状液滴形状和涡的指纹图谱。","authors":"Rupert P M Jagode, Alexander Scrimgeour, Florian Schlaghaufer, Johannes Fischer, Alkwin Slenczka","doi":"10.1021/acsphyschemau.5c00018","DOIUrl":null,"url":null,"abstract":"<p><p>X-ray and XUV diffraction experiments have visualized both the outer shape and quantum vortices inside individual superfluid helium droplets. Both features are effective on the helium induced signature observed as the spectral shape and position of the electronic transitions of molecules doped into helium droplets. In this article the helium induced signature at the electronic band origin of phthalocyanine is re-examined systematically comprising previous analytical results as well as newly reported experimental investigations. Helium-induced effects such as a nonmonotonous evolution of the solvent shift and the emergence of an optical anisotropy, both observed for rather large helium droplets, are the spectroscopic response on the analytical results reported from diffraction experiments. All helium induced spectroscopic features can be explained as an expression of London dispersion interaction under the varying structural conditions of helium droplets.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 5","pages":"467-477"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464779/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fingerprint of Droplet Shape and Vortex in the Line Shape at the Electronic Band Origin of Phthalocyanine in Superfluid Helium Droplets.\",\"authors\":\"Rupert P M Jagode, Alexander Scrimgeour, Florian Schlaghaufer, Johannes Fischer, Alkwin Slenczka\",\"doi\":\"10.1021/acsphyschemau.5c00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>X-ray and XUV diffraction experiments have visualized both the outer shape and quantum vortices inside individual superfluid helium droplets. Both features are effective on the helium induced signature observed as the spectral shape and position of the electronic transitions of molecules doped into helium droplets. In this article the helium induced signature at the electronic band origin of phthalocyanine is re-examined systematically comprising previous analytical results as well as newly reported experimental investigations. Helium-induced effects such as a nonmonotonous evolution of the solvent shift and the emergence of an optical anisotropy, both observed for rather large helium droplets, are the spectroscopic response on the analytical results reported from diffraction experiments. All helium induced spectroscopic features can be explained as an expression of London dispersion interaction under the varying structural conditions of helium droplets.</p>\",\"PeriodicalId\":29796,\"journal\":{\"name\":\"ACS Physical Chemistry Au\",\"volume\":\"5 5\",\"pages\":\"467-477\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464779/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Physical Chemistry Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsphyschemau.5c00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/24 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsphyschemau.5c00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/24 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Fingerprint of Droplet Shape and Vortex in the Line Shape at the Electronic Band Origin of Phthalocyanine in Superfluid Helium Droplets.
X-ray and XUV diffraction experiments have visualized both the outer shape and quantum vortices inside individual superfluid helium droplets. Both features are effective on the helium induced signature observed as the spectral shape and position of the electronic transitions of molecules doped into helium droplets. In this article the helium induced signature at the electronic band origin of phthalocyanine is re-examined systematically comprising previous analytical results as well as newly reported experimental investigations. Helium-induced effects such as a nonmonotonous evolution of the solvent shift and the emergence of an optical anisotropy, both observed for rather large helium droplets, are the spectroscopic response on the analytical results reported from diffraction experiments. All helium induced spectroscopic features can be explained as an expression of London dispersion interaction under the varying structural conditions of helium droplets.
期刊介绍:
ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis