双金属银铜掺杂PVP-Mg(OH)2纳米结构的协同催化和抗菌活性,以及硅分子对接。

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Zarqa Altaf, Muhammad Imran, Ali Haider, Iram Shahzadi, Zernab Mateen, Anwar Ul-Hamid, Ahmed M Fouda, Muhammad Ikram
{"title":"双金属银铜掺杂PVP-Mg(OH)2纳米结构的协同催化和抗菌活性,以及硅分子对接。","authors":"Zarqa Altaf, Muhammad Imran, Ali Haider, Iram Shahzadi, Zernab Mateen, Anwar Ul-Hamid, Ahmed M Fouda, Muhammad Ikram","doi":"10.1039/d5na00693g","DOIUrl":null,"url":null,"abstract":"<p><p>Industrial wastewater treatment is a critical challenge requiring innovative solutions to address global water scarcity. In this work, magnesium hydroxide Mg(OH)<sub>2</sub> nanostructures (NSs) were successfully synthesized <i>via</i> a cost-effective and sustainable co-precipitation approach, doped with 3 wt% polyvinylpyrrolidone (PVP) and varying amounts (2 and 4 wt%) of silver-copper (Ag-Cu). The main purpose of this research was to investigate the ternary system's ability in dye degradation and its antibacterial properties. PVP, as a capping agent, regulates the growth of the NSs and provides stability. The incorporation of Ag-Cu minimizes agglomeration and promotes the formation of a network comprising PVP-capped NSs along with Ag-Cu nanoparticles (NPs). This interconnected network facilitates charge transport, thereby enhancing the overall catalytic performance. The study revealed that 4 wt% Ag-Cu/PVP-Mg(OH)<sub>2</sub> significantly degrades (99.68%) rhodamine B (RhB) in acidic medium as opposed to alkaline and neutral pH levels, and it achieves a maximum inhibition zone of 7.95 ± 0.02 mm against MDR <i>Staphylococcus aureus</i> (<i>S. aureus</i>). The prospective inhibitory mechanism of the synthesized NSs on the DNA gyrase enzyme of <i>S. aureus</i> was explored by molecular docking.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12465013/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synergistic catalytic and antibacterial activity, along with <i>in silico</i> molecular docking of bimetallic silver-copper-doped PVP-Mg(OH)<sub>2</sub> nanostructures.\",\"authors\":\"Zarqa Altaf, Muhammad Imran, Ali Haider, Iram Shahzadi, Zernab Mateen, Anwar Ul-Hamid, Ahmed M Fouda, Muhammad Ikram\",\"doi\":\"10.1039/d5na00693g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Industrial wastewater treatment is a critical challenge requiring innovative solutions to address global water scarcity. In this work, magnesium hydroxide Mg(OH)<sub>2</sub> nanostructures (NSs) were successfully synthesized <i>via</i> a cost-effective and sustainable co-precipitation approach, doped with 3 wt% polyvinylpyrrolidone (PVP) and varying amounts (2 and 4 wt%) of silver-copper (Ag-Cu). The main purpose of this research was to investigate the ternary system's ability in dye degradation and its antibacterial properties. PVP, as a capping agent, regulates the growth of the NSs and provides stability. The incorporation of Ag-Cu minimizes agglomeration and promotes the formation of a network comprising PVP-capped NSs along with Ag-Cu nanoparticles (NPs). This interconnected network facilitates charge transport, thereby enhancing the overall catalytic performance. The study revealed that 4 wt% Ag-Cu/PVP-Mg(OH)<sub>2</sub> significantly degrades (99.68%) rhodamine B (RhB) in acidic medium as opposed to alkaline and neutral pH levels, and it achieves a maximum inhibition zone of 7.95 ± 0.02 mm against MDR <i>Staphylococcus aureus</i> (<i>S. aureus</i>). The prospective inhibitory mechanism of the synthesized NSs on the DNA gyrase enzyme of <i>S. aureus</i> was explored by molecular docking.</p>\",\"PeriodicalId\":18806,\"journal\":{\"name\":\"Nanoscale Advances\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12465013/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5na00693g\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5na00693g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

工业废水处理是一项严峻的挑战,需要创新的解决方案来解决全球水资源短缺问题。在这项工作中,通过经济有效和可持续的共沉淀法,成功合成了氢氧化镁Mg(OH)2纳米结构(NSs),其中掺杂了3 wt%的聚乙烯吡咯烷酮(PVP)和不同数量(2和4 wt%)的银铜(Ag-Cu)。本研究的主要目的是研究三元体系对染料的降解能力及其抗菌性能。PVP作为一种封顶剂,可以调节NSs的生长并提供稳定性。Ag-Cu的加入最大限度地减少了团聚,并促进了由pvp覆盖的纳米颗粒和Ag-Cu纳米颗粒(NPs)组成的网络的形成。这种相互连接的网络促进了电荷传输,从而提高了整体催化性能。研究发现,4 wt% Ag-Cu/PVP-Mg(OH)2在酸性培养基中对罗丹明B (rhodamine B, RhB)的降解率(99.68%)高于碱性和中性pH水平,对耐多药金黄色葡萄球菌(S. aureus)的最大抑制区为7.95±0.02 mm。通过分子对接探索合成的NSs对金黄色葡萄球菌DNA旋切酶的抑制机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic catalytic and antibacterial activity, along with in silico molecular docking of bimetallic silver-copper-doped PVP-Mg(OH)2 nanostructures.

Industrial wastewater treatment is a critical challenge requiring innovative solutions to address global water scarcity. In this work, magnesium hydroxide Mg(OH)2 nanostructures (NSs) were successfully synthesized via a cost-effective and sustainable co-precipitation approach, doped with 3 wt% polyvinylpyrrolidone (PVP) and varying amounts (2 and 4 wt%) of silver-copper (Ag-Cu). The main purpose of this research was to investigate the ternary system's ability in dye degradation and its antibacterial properties. PVP, as a capping agent, regulates the growth of the NSs and provides stability. The incorporation of Ag-Cu minimizes agglomeration and promotes the formation of a network comprising PVP-capped NSs along with Ag-Cu nanoparticles (NPs). This interconnected network facilitates charge transport, thereby enhancing the overall catalytic performance. The study revealed that 4 wt% Ag-Cu/PVP-Mg(OH)2 significantly degrades (99.68%) rhodamine B (RhB) in acidic medium as opposed to alkaline and neutral pH levels, and it achieves a maximum inhibition zone of 7.95 ± 0.02 mm against MDR Staphylococcus aureus (S. aureus). The prospective inhibitory mechanism of the synthesized NSs on the DNA gyrase enzyme of S. aureus was explored by molecular docking.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信