{"title":"植物提取物绿色合成纳米铜的研究进展:方法、表征及应用","authors":"Satendra Kumar, Sweta Kumari Tripathy, Niranjan Kaushik","doi":"10.2174/0122117385384107250825115755","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This review examines the green synthesis of copper nanoparticles (CuNPs) using plant extracts, highlighting eco-friendly, cost-effective, and biocompatible alternatives to traditional chemical and physical methods for sustainable nanotechnology applications.</p><p><strong>Methods: </strong>Studies on green synthesis using plant extracts, comparative analyses with traditional methods, and applications of CuNPs in agriculture, medicine, and wastewater treatment were prioritized [1]. Characterization data, including UV-Vis, XRD, SEM, TEM, FTIR, and EDX, along with particle size and quantitative metrics (e.g., MICs, inhibition zones), were compiled [1].</p><p><strong>Results: </strong>Green-synthesized CuNPs (1.8-37 nm) exhibit spherical morphology observed by SEM/TEM, surface functionalities identified by FTIR, and elemental composition determined by EDX [2]. Compared to traditional methods such as laser ablation (12 nm) and chemical reduction (10-30 nm), green synthesis reduces toxicity and energy consumption but faces scalability challenges [2]. CuNPs outperform AgNPs, AuNPs, and SeNPs, with MICs of 6.25-25 μg/mL and inhibition zones of 14-18 mm against Staphylococcus aureus and Escherichia coli [2]. In agriculture, CuNPs reduce the severity of Fusarium infection by 88% [2].</p><p><strong>Discussion: </strong>Green CuNPs are effective germicides and catalysts due to the release of Cu²⁺ ions and generation of reactive oxygen species [3]. However, variable particle sizes and concentrationdependent toxicity, such as 100 mg/L in wheat, limit scalability and environmental safety [3].</p><p><strong>Conclusion: </strong>Green synthesis offers a sustainable approach to producing CuNPs for applications in agriculture, medicine, and wastewater treatment [4]. Standardized protocols are needed to ensure reproducibility and scalability while minimizing environmental risks [4].</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review on Green Synthesis of Copper Nanoparticles Using Plant Extracts: Methods, Characterization, and Applications.\",\"authors\":\"Satendra Kumar, Sweta Kumari Tripathy, Niranjan Kaushik\",\"doi\":\"10.2174/0122117385384107250825115755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>This review examines the green synthesis of copper nanoparticles (CuNPs) using plant extracts, highlighting eco-friendly, cost-effective, and biocompatible alternatives to traditional chemical and physical methods for sustainable nanotechnology applications.</p><p><strong>Methods: </strong>Studies on green synthesis using plant extracts, comparative analyses with traditional methods, and applications of CuNPs in agriculture, medicine, and wastewater treatment were prioritized [1]. Characterization data, including UV-Vis, XRD, SEM, TEM, FTIR, and EDX, along with particle size and quantitative metrics (e.g., MICs, inhibition zones), were compiled [1].</p><p><strong>Results: </strong>Green-synthesized CuNPs (1.8-37 nm) exhibit spherical morphology observed by SEM/TEM, surface functionalities identified by FTIR, and elemental composition determined by EDX [2]. Compared to traditional methods such as laser ablation (12 nm) and chemical reduction (10-30 nm), green synthesis reduces toxicity and energy consumption but faces scalability challenges [2]. CuNPs outperform AgNPs, AuNPs, and SeNPs, with MICs of 6.25-25 μg/mL and inhibition zones of 14-18 mm against Staphylococcus aureus and Escherichia coli [2]. In agriculture, CuNPs reduce the severity of Fusarium infection by 88% [2].</p><p><strong>Discussion: </strong>Green CuNPs are effective germicides and catalysts due to the release of Cu²⁺ ions and generation of reactive oxygen species [3]. However, variable particle sizes and concentrationdependent toxicity, such as 100 mg/L in wheat, limit scalability and environmental safety [3].</p><p><strong>Conclusion: </strong>Green synthesis offers a sustainable approach to producing CuNPs for applications in agriculture, medicine, and wastewater treatment [4]. Standardized protocols are needed to ensure reproducibility and scalability while minimizing environmental risks [4].</p>\",\"PeriodicalId\":19774,\"journal\":{\"name\":\"Pharmaceutical nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0122117385384107250825115755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385384107250825115755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
A Review on Green Synthesis of Copper Nanoparticles Using Plant Extracts: Methods, Characterization, and Applications.
Introduction: This review examines the green synthesis of copper nanoparticles (CuNPs) using plant extracts, highlighting eco-friendly, cost-effective, and biocompatible alternatives to traditional chemical and physical methods for sustainable nanotechnology applications.
Methods: Studies on green synthesis using plant extracts, comparative analyses with traditional methods, and applications of CuNPs in agriculture, medicine, and wastewater treatment were prioritized [1]. Characterization data, including UV-Vis, XRD, SEM, TEM, FTIR, and EDX, along with particle size and quantitative metrics (e.g., MICs, inhibition zones), were compiled [1].
Results: Green-synthesized CuNPs (1.8-37 nm) exhibit spherical morphology observed by SEM/TEM, surface functionalities identified by FTIR, and elemental composition determined by EDX [2]. Compared to traditional methods such as laser ablation (12 nm) and chemical reduction (10-30 nm), green synthesis reduces toxicity and energy consumption but faces scalability challenges [2]. CuNPs outperform AgNPs, AuNPs, and SeNPs, with MICs of 6.25-25 μg/mL and inhibition zones of 14-18 mm against Staphylococcus aureus and Escherichia coli [2]. In agriculture, CuNPs reduce the severity of Fusarium infection by 88% [2].
Discussion: Green CuNPs are effective germicides and catalysts due to the release of Cu²⁺ ions and generation of reactive oxygen species [3]. However, variable particle sizes and concentrationdependent toxicity, such as 100 mg/L in wheat, limit scalability and environmental safety [3].
Conclusion: Green synthesis offers a sustainable approach to producing CuNPs for applications in agriculture, medicine, and wastewater treatment [4]. Standardized protocols are needed to ensure reproducibility and scalability while minimizing environmental risks [4].
期刊介绍:
Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.