Harshvardhan Joshi, Jasmine Isar, Vidhya Rangaswamy, Anu Raghunathan
{"title":"3-羟基丙酸生物合成的代谢工程和发酵研究进展综述。","authors":"Harshvardhan Joshi, Jasmine Isar, Vidhya Rangaswamy, Anu Raghunathan","doi":"10.1007/s11274-025-04554-w","DOIUrl":null,"url":null,"abstract":"<p><p>The grand challenge in biobased Manufacturing Lies in achieving the sustainable, economically competitive conversion of renewable biomass into high-value Chemicals capable of replacing fossil-derived products. Among these, 3-hydroxypropionic acid (3-HP) has emerged as a top-tier target-an exceptionally versatile platform molecule. It finds applications in the synthesis of acrylic acid, 1,3-propanediol, and other derivatives, positioning it as a potential cornerstone for bio-based plastics. This review consolidates the latest breakthroughs in microbial 3-HP production, encompassing advanced strain engineering, pathway rewiring, cofactor optimization, metabolic modeling, and flux balance analysis. We critically examine strategies to overcome inherent metabolic and physiological constraints, including byproduct suppression, redox balancing, and tolerance engineering. Emerging approaches-such as dynamic regulation of metabolic flux, control of cell morphology and density, and integration of co-production pathways-are highlighted for their capacity to boost yields and process robustness. Additionally, we address the fermentation process innovations targeting enhanced productivity, substrate efficiency, minimal nutrient input, and industrially relevant titres. Collectively, these insights Chart a clear path toward the scalable, sustainable biomanufacturer of 3-HP.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 10","pages":"352"},"PeriodicalIF":4.2000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in metabolic engineering and fermentation for 3-hydroxypropionic acid biosynthesis: a comprehensive review.\",\"authors\":\"Harshvardhan Joshi, Jasmine Isar, Vidhya Rangaswamy, Anu Raghunathan\",\"doi\":\"10.1007/s11274-025-04554-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The grand challenge in biobased Manufacturing Lies in achieving the sustainable, economically competitive conversion of renewable biomass into high-value Chemicals capable of replacing fossil-derived products. Among these, 3-hydroxypropionic acid (3-HP) has emerged as a top-tier target-an exceptionally versatile platform molecule. It finds applications in the synthesis of acrylic acid, 1,3-propanediol, and other derivatives, positioning it as a potential cornerstone for bio-based plastics. This review consolidates the latest breakthroughs in microbial 3-HP production, encompassing advanced strain engineering, pathway rewiring, cofactor optimization, metabolic modeling, and flux balance analysis. We critically examine strategies to overcome inherent metabolic and physiological constraints, including byproduct suppression, redox balancing, and tolerance engineering. Emerging approaches-such as dynamic regulation of metabolic flux, control of cell morphology and density, and integration of co-production pathways-are highlighted for their capacity to boost yields and process robustness. Additionally, we address the fermentation process innovations targeting enhanced productivity, substrate efficiency, minimal nutrient input, and industrially relevant titres. Collectively, these insights Chart a clear path toward the scalable, sustainable biomanufacturer of 3-HP.</p>\",\"PeriodicalId\":23703,\"journal\":{\"name\":\"World journal of microbiology & biotechnology\",\"volume\":\"41 10\",\"pages\":\"352\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of microbiology & biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11274-025-04554-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-025-04554-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Advances in metabolic engineering and fermentation for 3-hydroxypropionic acid biosynthesis: a comprehensive review.
The grand challenge in biobased Manufacturing Lies in achieving the sustainable, economically competitive conversion of renewable biomass into high-value Chemicals capable of replacing fossil-derived products. Among these, 3-hydroxypropionic acid (3-HP) has emerged as a top-tier target-an exceptionally versatile platform molecule. It finds applications in the synthesis of acrylic acid, 1,3-propanediol, and other derivatives, positioning it as a potential cornerstone for bio-based plastics. This review consolidates the latest breakthroughs in microbial 3-HP production, encompassing advanced strain engineering, pathway rewiring, cofactor optimization, metabolic modeling, and flux balance analysis. We critically examine strategies to overcome inherent metabolic and physiological constraints, including byproduct suppression, redox balancing, and tolerance engineering. Emerging approaches-such as dynamic regulation of metabolic flux, control of cell morphology and density, and integration of co-production pathways-are highlighted for their capacity to boost yields and process robustness. Additionally, we address the fermentation process innovations targeting enhanced productivity, substrate efficiency, minimal nutrient input, and industrially relevant titres. Collectively, these insights Chart a clear path toward the scalable, sustainable biomanufacturer of 3-HP.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.