二维范德华结构中静电增强的红外吸收。

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Zichao Ma, Changjian Zhou
{"title":"二维范德华结构中静电增强的红外吸收。","authors":"Zichao Ma, Changjian Zhou","doi":"10.1039/d5na00648a","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional (2D) semiconductors exhibit strong light absorption, yet their large bandgaps limit broadband photodetection. While van der Waals (vdW) heterostructures of 2D materials enable infrared excitation through narrowed interlayer bandgaps, achieving efficient control over these interlayer transitions remains a fundamental challenge. Through first-principles simulations and electrostatic engineering approaches, this study establishes a direct correlation between interfacial charge redistribution and enhanced interlayer excitations in 2D vdW structures. The results demonstrate that versatile strategies such as external electric field application, substitutional doping, and graphene interlayer integration effectively reduce interlayer bandgaps by several hundred millielectronvolts while significantly increasing interfacial charge exchange. These engineered heterostructures achieve exceptional absorption coefficients greater than 10<sup>5</sup> cm<sup>-1</sup> spanning visible to mid-infrared wavelengths. These findings provide essential design principles and offer engineering strategies for developing broadband photodetectors using 2D vdW structures.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466197/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electrostatically enhanced infrared absorption in two-dimensional van der Waals structures.\",\"authors\":\"Zichao Ma, Changjian Zhou\",\"doi\":\"10.1039/d5na00648a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-dimensional (2D) semiconductors exhibit strong light absorption, yet their large bandgaps limit broadband photodetection. While van der Waals (vdW) heterostructures of 2D materials enable infrared excitation through narrowed interlayer bandgaps, achieving efficient control over these interlayer transitions remains a fundamental challenge. Through first-principles simulations and electrostatic engineering approaches, this study establishes a direct correlation between interfacial charge redistribution and enhanced interlayer excitations in 2D vdW structures. The results demonstrate that versatile strategies such as external electric field application, substitutional doping, and graphene interlayer integration effectively reduce interlayer bandgaps by several hundred millielectronvolts while significantly increasing interfacial charge exchange. These engineered heterostructures achieve exceptional absorption coefficients greater than 10<sup>5</sup> cm<sup>-1</sup> spanning visible to mid-infrared wavelengths. These findings provide essential design principles and offer engineering strategies for developing broadband photodetectors using 2D vdW structures.</p>\",\"PeriodicalId\":18806,\"journal\":{\"name\":\"Nanoscale Advances\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466197/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5na00648a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5na00648a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)半导体表现出强烈的光吸收,但它们的大带隙限制了宽带光探测。虽然二维材料的范德华(vdW)异质结构可以通过狭窄的层间带隙实现红外激发,但如何有效控制这些层间跃迁仍然是一个基本挑战。通过第一性原理模拟和静电工程方法,本研究建立了二维vdW结构中界面电荷重分布与层间激发增强之间的直接关联。结果表明,外电场应用、取代掺杂和石墨烯层间集成等多种策略有效地减少了数亿电子伏特的层间带隙,同时显著增加了界面电荷交换。这些工程异质结构的吸收系数大于105 cm-1,跨越可见到中红外波长。这些发现为利用二维vdW结构开发宽带光电探测器提供了基本的设计原则和工程策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrostatically enhanced infrared absorption in two-dimensional van der Waals structures.

Two-dimensional (2D) semiconductors exhibit strong light absorption, yet their large bandgaps limit broadband photodetection. While van der Waals (vdW) heterostructures of 2D materials enable infrared excitation through narrowed interlayer bandgaps, achieving efficient control over these interlayer transitions remains a fundamental challenge. Through first-principles simulations and electrostatic engineering approaches, this study establishes a direct correlation between interfacial charge redistribution and enhanced interlayer excitations in 2D vdW structures. The results demonstrate that versatile strategies such as external electric field application, substitutional doping, and graphene interlayer integration effectively reduce interlayer bandgaps by several hundred millielectronvolts while significantly increasing interfacial charge exchange. These engineered heterostructures achieve exceptional absorption coefficients greater than 105 cm-1 spanning visible to mid-infrared wavelengths. These findings provide essential design principles and offer engineering strategies for developing broadband photodetectors using 2D vdW structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信