{"title":"木麻黄小泡包膜发育缺陷突变体的研究。","authors":"Ken-Ichi Kucho, Kosuke Taniyama","doi":"10.1264/jsme2.ME25037","DOIUrl":null,"url":null,"abstract":"<p><p>Frankia, a nitrogen-fixing actinobacterium, forms a unique multicellular structure known as a vesicle that is dedicated to nitrogen fixation. The vesicle is surrounded by a thick hopanoid lipid envelope that acts as a barrier against oxygen penetration, preventing nitrogenase inactivation. Five mutants produced a similar number of vesicles to the wild type; however, they failed to fix N<sub>2</sub>. The thickness of vesicle envelopes was reduced in all five mutants, and the oxygen concentration increased inside the vesicles of four mutants. Therefore, these mutants were unable to fix N<sub>2</sub> due to the inactivation of nitrogenase caused by oxygen penetration into the vesicles.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"40 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12501873/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterization of Frankia casuarinae Mutants Defective in Vesicle Envelope Development.\",\"authors\":\"Ken-Ichi Kucho, Kosuke Taniyama\",\"doi\":\"10.1264/jsme2.ME25037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Frankia, a nitrogen-fixing actinobacterium, forms a unique multicellular structure known as a vesicle that is dedicated to nitrogen fixation. The vesicle is surrounded by a thick hopanoid lipid envelope that acts as a barrier against oxygen penetration, preventing nitrogenase inactivation. Five mutants produced a similar number of vesicles to the wild type; however, they failed to fix N<sub>2</sub>. The thickness of vesicle envelopes was reduced in all five mutants, and the oxygen concentration increased inside the vesicles of four mutants. Therefore, these mutants were unable to fix N<sub>2</sub> due to the inactivation of nitrogenase caused by oxygen penetration into the vesicles.</p>\",\"PeriodicalId\":18482,\"journal\":{\"name\":\"Microbes and Environments\",\"volume\":\"40 3\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12501873/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbes and Environments\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1264/jsme2.ME25037\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Environments","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1264/jsme2.ME25037","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Characterization of Frankia casuarinae Mutants Defective in Vesicle Envelope Development.
Frankia, a nitrogen-fixing actinobacterium, forms a unique multicellular structure known as a vesicle that is dedicated to nitrogen fixation. The vesicle is surrounded by a thick hopanoid lipid envelope that acts as a barrier against oxygen penetration, preventing nitrogenase inactivation. Five mutants produced a similar number of vesicles to the wild type; however, they failed to fix N2. The thickness of vesicle envelopes was reduced in all five mutants, and the oxygen concentration increased inside the vesicles of four mutants. Therefore, these mutants were unable to fix N2 due to the inactivation of nitrogenase caused by oxygen penetration into the vesicles.
期刊介绍:
Microbial ecology in natural and engineered environments; Microbial degradation of xenobiotic compounds; Microbial processes in biogeochemical cycles; Microbial interactions and signaling with animals and plants; Interactions among microorganisms; Microorganisms related to public health; Phylogenetic and functional diversity of microbial communities; Genomics, metagenomics, and bioinformatics for microbiology; Application of microorganisms to agriculture, fishery, and industry; Molecular biology and biochemistry related to environmental microbiology; Methodology in general and environmental microbiology; Interdisciplinary research areas for microbial ecology (e.g., Astrobiology, and Origins of Life); Taxonomic description of novel microorganisms with ecological perspective; Physiology and metabolisms of microorganisms; Evolution of genes and microorganisms; Genome report of microorganisms with ecological perspective.