Saroj Gourkanti, Yazmin Munoz, Jacqueline Cheung, Rosa M. Chavez, Devanshi Agarwal, Taylor J. Schoen, Kristina Solorio-Kirpichyan, Sonya E. Neal
{"title":"等待一个模型:脊椎动物发育和疾病中的菱形超家族。","authors":"Saroj Gourkanti, Yazmin Munoz, Jacqueline Cheung, Rosa M. Chavez, Devanshi Agarwal, Taylor J. Schoen, Kristina Solorio-Kirpichyan, Sonya E. Neal","doi":"10.1002/jcp.70094","DOIUrl":null,"url":null,"abstract":"<p>The rhomboid superfamily, comprising both proteases and pseudoproteases, has emerged as a central regulator of membrane biology, mediating diverse functions including protein quality control, signal transduction, trafficking, and more. While molecular mechanisms of rhomboid activity have been well-characterized in invertebrate and cell-based systems, their physiological role in vertebrate development remains limited and continues to evolve. Here, we review recent advances in cell culture systems and vertebrate models that uncover the developmental and disease-relevant functions of rhomboid family members, including RHBDLs, iRhoms, PARL, and Derlins. We outline their roles in embryogenesis, tissue regeneration, neurodevelopment, and immune signaling, alongside their pathological involvement in cancer, neurodegeneration, and metabolic disorders. We also emphasize the limitations posed by early embryonic lethality in knockout models and advocate for tissue-specific vertebrate models to dissect rhomboid-dependent pathways in vivo. Understanding how rhomboid proteins coordinate developmental processes will not only reveal fundamental principles of membrane-associated processes, but also open new avenues for therapeutic targeting in disease.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 9","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476590/pdf/","citationCount":"0","resultStr":"{\"title\":\"Holding Out for a Model: Rhomboid Superfamily in Vertebrate Development and Disease\",\"authors\":\"Saroj Gourkanti, Yazmin Munoz, Jacqueline Cheung, Rosa M. Chavez, Devanshi Agarwal, Taylor J. Schoen, Kristina Solorio-Kirpichyan, Sonya E. Neal\",\"doi\":\"10.1002/jcp.70094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rhomboid superfamily, comprising both proteases and pseudoproteases, has emerged as a central regulator of membrane biology, mediating diverse functions including protein quality control, signal transduction, trafficking, and more. While molecular mechanisms of rhomboid activity have been well-characterized in invertebrate and cell-based systems, their physiological role in vertebrate development remains limited and continues to evolve. Here, we review recent advances in cell culture systems and vertebrate models that uncover the developmental and disease-relevant functions of rhomboid family members, including RHBDLs, iRhoms, PARL, and Derlins. We outline their roles in embryogenesis, tissue regeneration, neurodevelopment, and immune signaling, alongside their pathological involvement in cancer, neurodegeneration, and metabolic disorders. We also emphasize the limitations posed by early embryonic lethality in knockout models and advocate for tissue-specific vertebrate models to dissect rhomboid-dependent pathways in vivo. Understanding how rhomboid proteins coordinate developmental processes will not only reveal fundamental principles of membrane-associated processes, but also open new avenues for therapeutic targeting in disease.</p>\",\"PeriodicalId\":15220,\"journal\":{\"name\":\"Journal of Cellular Physiology\",\"volume\":\"240 9\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476590/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70094\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70094","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Holding Out for a Model: Rhomboid Superfamily in Vertebrate Development and Disease
The rhomboid superfamily, comprising both proteases and pseudoproteases, has emerged as a central regulator of membrane biology, mediating diverse functions including protein quality control, signal transduction, trafficking, and more. While molecular mechanisms of rhomboid activity have been well-characterized in invertebrate and cell-based systems, their physiological role in vertebrate development remains limited and continues to evolve. Here, we review recent advances in cell culture systems and vertebrate models that uncover the developmental and disease-relevant functions of rhomboid family members, including RHBDLs, iRhoms, PARL, and Derlins. We outline their roles in embryogenesis, tissue regeneration, neurodevelopment, and immune signaling, alongside their pathological involvement in cancer, neurodegeneration, and metabolic disorders. We also emphasize the limitations posed by early embryonic lethality in knockout models and advocate for tissue-specific vertebrate models to dissect rhomboid-dependent pathways in vivo. Understanding how rhomboid proteins coordinate developmental processes will not only reveal fundamental principles of membrane-associated processes, but also open new avenues for therapeutic targeting in disease.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.