{"title":"利用模拟光学扫描全息和主动轮廓方法对白血病细胞进行高级自动分类和分割。","authors":"Abdennacer El-Ouarzadi, Abdelaziz Essadike, Younes Achaoui, Abdenbi Bouzid","doi":"10.1117/1.JBO.30.9.096005","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Leukemia, a complex hematological cancer, poses significant diagnostic challenges due to the heterogeneity of leukemic cells, inter-observer variability, and lack of standardized analysis methodology. Accurate and rapid cell classification is essential to improve clinical management, optimize treatment, and reduce diagnostic errors.</p><p><strong>Aim: </strong>We propose an innovative approach combining optical scanning holography (OSH) and active contour (AC) models to automate the classification and segmentation of leukemic cells with increased accuracy.</p><p><strong>Approach: </strong>OSH is used to capture the phase current of leukocytes, providing a cost-effective, noninvasive, and simplified alternative to conventional techniques. AC models are used to improve cell segmentation. Analysis of the maximum amplitude values of the phase current allows rapid and fully automated classification.</p><p><strong>Results: </strong>The proposed approach shows a significant improvement in terms of reliability, speed, and reproducibility compared with existing methods. The integration of OSH and AC enables robust segmentation and efficient classification of leukemic cells.</p><p><strong>Conclusion: </strong>This method provides a reliable, rapid, and systematic solution for the accurate diagnosis of leukemia, enabling optimized therapeutic management.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 9","pages":"096005"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476259/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advanced automated classification and segmentation of leukemic cells using simulated optical scanning holography and active contour methods.\",\"authors\":\"Abdennacer El-Ouarzadi, Abdelaziz Essadike, Younes Achaoui, Abdenbi Bouzid\",\"doi\":\"10.1117/1.JBO.30.9.096005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Leukemia, a complex hematological cancer, poses significant diagnostic challenges due to the heterogeneity of leukemic cells, inter-observer variability, and lack of standardized analysis methodology. Accurate and rapid cell classification is essential to improve clinical management, optimize treatment, and reduce diagnostic errors.</p><p><strong>Aim: </strong>We propose an innovative approach combining optical scanning holography (OSH) and active contour (AC) models to automate the classification and segmentation of leukemic cells with increased accuracy.</p><p><strong>Approach: </strong>OSH is used to capture the phase current of leukocytes, providing a cost-effective, noninvasive, and simplified alternative to conventional techniques. AC models are used to improve cell segmentation. Analysis of the maximum amplitude values of the phase current allows rapid and fully automated classification.</p><p><strong>Results: </strong>The proposed approach shows a significant improvement in terms of reliability, speed, and reproducibility compared with existing methods. The integration of OSH and AC enables robust segmentation and efficient classification of leukemic cells.</p><p><strong>Conclusion: </strong>This method provides a reliable, rapid, and systematic solution for the accurate diagnosis of leukemia, enabling optimized therapeutic management.</p>\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"30 9\",\"pages\":\"096005\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476259/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JBO.30.9.096005\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.9.096005","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Advanced automated classification and segmentation of leukemic cells using simulated optical scanning holography and active contour methods.
Significance: Leukemia, a complex hematological cancer, poses significant diagnostic challenges due to the heterogeneity of leukemic cells, inter-observer variability, and lack of standardized analysis methodology. Accurate and rapid cell classification is essential to improve clinical management, optimize treatment, and reduce diagnostic errors.
Aim: We propose an innovative approach combining optical scanning holography (OSH) and active contour (AC) models to automate the classification and segmentation of leukemic cells with increased accuracy.
Approach: OSH is used to capture the phase current of leukocytes, providing a cost-effective, noninvasive, and simplified alternative to conventional techniques. AC models are used to improve cell segmentation. Analysis of the maximum amplitude values of the phase current allows rapid and fully automated classification.
Results: The proposed approach shows a significant improvement in terms of reliability, speed, and reproducibility compared with existing methods. The integration of OSH and AC enables robust segmentation and efficient classification of leukemic cells.
Conclusion: This method provides a reliable, rapid, and systematic solution for the accurate diagnosis of leukemia, enabling optimized therapeutic management.
期刊介绍:
The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.