Pai-Feng Yang, Jamie L Reed, Anirban Sengupta, Arabinda Mishra, Feng Wang, John C Gore, Li Min Chen
{"title":"脊髓损伤后脊髓静息状态功能连通性与电生理的关系","authors":"Pai-Feng Yang, Jamie L Reed, Anirban Sengupta, Arabinda Mishra, Feng Wang, John C Gore, Li Min Chen","doi":"10.1002/hbm.70370","DOIUrl":null,"url":null,"abstract":"<p><p>We previously reported that a unilateral dorsal column lesion (DCL) at the cervical C4 level primarily reduces inter-horn resting-state functional connectivity (rsFC) measured by functional Magnetic Resonance Imaging (fMRI) in segments below the lesion. This study compares changes in rsFC from fMRI with changes in local field potential (LFP) coherence over an extended post-injury period. High-resolution fMRI and LFP data were acquired bilaterally in healthy monkeys and at 3- and 6-months post-lesion. At 3 months post-injury, tactile-stimulus-evoked LFP power in the dorsal horn was significantly weaker than in the healthy cord and non-lesion side. LFP coherences increased on the lesion side for the dorsal-to-intermediate zone (D-IGM) and dorsal-to-ventral (D-V) pairs but decreased for the non-lesion side D-IGM. By 6 months, stimulus-evoked LFP power on the lesion side remained low. LFP coherences between dorsal-to-dorsal (D-D), ventral-to-ventral (V-V), and D-V pairs on both the lesion and non-lesion sides were significantly reduced relative to the healthy cord. Low-frequency (delta, theta, and alpha) D-IGM coherences on the lesion side, and high-frequency (beta and gamma) coherences on the non-lesion side, were also significantly weakened. Across specific inter-horn pairs and time points, changes in LFP coherences and rsFC measures were weakly correlated. Measurements of inter-horn correlations two segments caudal to the lesion level at C7 revealed distance-dependent intraspinal connectivity changes following DCL. Post-mortem histology confirmed a complete DCL in most animals (7/9). The extent of the disruption of ascending sensory afferents, as assessed histologically, did not appear to correlate with the degree of LFP power reduction or rsFC changes at post-injury time points. In summary, we observed temporally and spatially heterogeneous changes of fMRI correlations and LFP coherences within intraspinal circuits. fMRI rsFC and LFP coherences were not always concordant, with discrepancies depending on specific gray-matter horns and intermediate-zone pairs.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 14","pages":"e70370"},"PeriodicalIF":3.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12477704/pdf/","citationCount":"0","resultStr":"{\"title\":\"Relationships Between Intra-Spinal Resting-State Functional Connectivity and Electrophysiology Following Spinal Cord Injury.\",\"authors\":\"Pai-Feng Yang, Jamie L Reed, Anirban Sengupta, Arabinda Mishra, Feng Wang, John C Gore, Li Min Chen\",\"doi\":\"10.1002/hbm.70370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We previously reported that a unilateral dorsal column lesion (DCL) at the cervical C4 level primarily reduces inter-horn resting-state functional connectivity (rsFC) measured by functional Magnetic Resonance Imaging (fMRI) in segments below the lesion. This study compares changes in rsFC from fMRI with changes in local field potential (LFP) coherence over an extended post-injury period. High-resolution fMRI and LFP data were acquired bilaterally in healthy monkeys and at 3- and 6-months post-lesion. At 3 months post-injury, tactile-stimulus-evoked LFP power in the dorsal horn was significantly weaker than in the healthy cord and non-lesion side. LFP coherences increased on the lesion side for the dorsal-to-intermediate zone (D-IGM) and dorsal-to-ventral (D-V) pairs but decreased for the non-lesion side D-IGM. By 6 months, stimulus-evoked LFP power on the lesion side remained low. LFP coherences between dorsal-to-dorsal (D-D), ventral-to-ventral (V-V), and D-V pairs on both the lesion and non-lesion sides were significantly reduced relative to the healthy cord. Low-frequency (delta, theta, and alpha) D-IGM coherences on the lesion side, and high-frequency (beta and gamma) coherences on the non-lesion side, were also significantly weakened. Across specific inter-horn pairs and time points, changes in LFP coherences and rsFC measures were weakly correlated. Measurements of inter-horn correlations two segments caudal to the lesion level at C7 revealed distance-dependent intraspinal connectivity changes following DCL. Post-mortem histology confirmed a complete DCL in most animals (7/9). The extent of the disruption of ascending sensory afferents, as assessed histologically, did not appear to correlate with the degree of LFP power reduction or rsFC changes at post-injury time points. In summary, we observed temporally and spatially heterogeneous changes of fMRI correlations and LFP coherences within intraspinal circuits. fMRI rsFC and LFP coherences were not always concordant, with discrepancies depending on specific gray-matter horns and intermediate-zone pairs.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 14\",\"pages\":\"e70370\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12477704/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/hbm.70370\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/hbm.70370","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Relationships Between Intra-Spinal Resting-State Functional Connectivity and Electrophysiology Following Spinal Cord Injury.
We previously reported that a unilateral dorsal column lesion (DCL) at the cervical C4 level primarily reduces inter-horn resting-state functional connectivity (rsFC) measured by functional Magnetic Resonance Imaging (fMRI) in segments below the lesion. This study compares changes in rsFC from fMRI with changes in local field potential (LFP) coherence over an extended post-injury period. High-resolution fMRI and LFP data were acquired bilaterally in healthy monkeys and at 3- and 6-months post-lesion. At 3 months post-injury, tactile-stimulus-evoked LFP power in the dorsal horn was significantly weaker than in the healthy cord and non-lesion side. LFP coherences increased on the lesion side for the dorsal-to-intermediate zone (D-IGM) and dorsal-to-ventral (D-V) pairs but decreased for the non-lesion side D-IGM. By 6 months, stimulus-evoked LFP power on the lesion side remained low. LFP coherences between dorsal-to-dorsal (D-D), ventral-to-ventral (V-V), and D-V pairs on both the lesion and non-lesion sides were significantly reduced relative to the healthy cord. Low-frequency (delta, theta, and alpha) D-IGM coherences on the lesion side, and high-frequency (beta and gamma) coherences on the non-lesion side, were also significantly weakened. Across specific inter-horn pairs and time points, changes in LFP coherences and rsFC measures were weakly correlated. Measurements of inter-horn correlations two segments caudal to the lesion level at C7 revealed distance-dependent intraspinal connectivity changes following DCL. Post-mortem histology confirmed a complete DCL in most animals (7/9). The extent of the disruption of ascending sensory afferents, as assessed histologically, did not appear to correlate with the degree of LFP power reduction or rsFC changes at post-injury time points. In summary, we observed temporally and spatially heterogeneous changes of fMRI correlations and LFP coherences within intraspinal circuits. fMRI rsFC and LFP coherences were not always concordant, with discrepancies depending on specific gray-matter horns and intermediate-zone pairs.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.