Xin Wang, Zhaoyang Qi, Qin Zeng, Dongling Gu, Tianliang Li
{"title":"人工智能时代胶质瘤放疗的应用现状及未来展望","authors":"Xin Wang, Zhaoyang Qi, Qin Zeng, Dongling Gu, Tianliang Li","doi":"10.3389/fonc.2025.1673752","DOIUrl":null,"url":null,"abstract":"<p><p>Gliomas are primary central nervous system tumors characterized by a high recurrence rate and poor prognosis, especially in high-grade forms such as glioblastoma (GBM). Radiotherapy remains a cornerstone in glioma management, particularly following surgical resection. Recent advancements in technology-including intensity-modulated radiotherapy (IMRT), proton therapy, carbon-ion radiotherapy, intraoperative radiotherapy, and ultra-high dose rate FLASH radiotherapy-have improved treatment precision and tumor control. However, clinical challenges persist due to tumor heterogeneity, imaging limitations, and planning variability. In the era of artificial intelligence (AI), novel tools such as radiomics, deep learning, and predictive modeling are increasingly being integrated into glioma radiotherapy workflows. These AI-driven approaches have shown potential to enhance imaging interpretation, automate contouring, optimize treatment planning, and predict clinical outcomes. This review highlights the evolution of glioma radiotherapy, explores the emerging role of AI across various stages of radiotherapy, and discusses future directions for implementing personalized, adaptive, and data-driven strategies in clinical practice.</p>","PeriodicalId":12482,"journal":{"name":"Frontiers in Oncology","volume":"15 ","pages":"1673752"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12460113/pdf/","citationCount":"0","resultStr":"{\"title\":\"Radiotherapy for glioma in the AI era: current applications and future prospects.\",\"authors\":\"Xin Wang, Zhaoyang Qi, Qin Zeng, Dongling Gu, Tianliang Li\",\"doi\":\"10.3389/fonc.2025.1673752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gliomas are primary central nervous system tumors characterized by a high recurrence rate and poor prognosis, especially in high-grade forms such as glioblastoma (GBM). Radiotherapy remains a cornerstone in glioma management, particularly following surgical resection. Recent advancements in technology-including intensity-modulated radiotherapy (IMRT), proton therapy, carbon-ion radiotherapy, intraoperative radiotherapy, and ultra-high dose rate FLASH radiotherapy-have improved treatment precision and tumor control. However, clinical challenges persist due to tumor heterogeneity, imaging limitations, and planning variability. In the era of artificial intelligence (AI), novel tools such as radiomics, deep learning, and predictive modeling are increasingly being integrated into glioma radiotherapy workflows. These AI-driven approaches have shown potential to enhance imaging interpretation, automate contouring, optimize treatment planning, and predict clinical outcomes. This review highlights the evolution of glioma radiotherapy, explores the emerging role of AI across various stages of radiotherapy, and discusses future directions for implementing personalized, adaptive, and data-driven strategies in clinical practice.</p>\",\"PeriodicalId\":12482,\"journal\":{\"name\":\"Frontiers in Oncology\",\"volume\":\"15 \",\"pages\":\"1673752\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12460113/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fonc.2025.1673752\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fonc.2025.1673752","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Radiotherapy for glioma in the AI era: current applications and future prospects.
Gliomas are primary central nervous system tumors characterized by a high recurrence rate and poor prognosis, especially in high-grade forms such as glioblastoma (GBM). Radiotherapy remains a cornerstone in glioma management, particularly following surgical resection. Recent advancements in technology-including intensity-modulated radiotherapy (IMRT), proton therapy, carbon-ion radiotherapy, intraoperative radiotherapy, and ultra-high dose rate FLASH radiotherapy-have improved treatment precision and tumor control. However, clinical challenges persist due to tumor heterogeneity, imaging limitations, and planning variability. In the era of artificial intelligence (AI), novel tools such as radiomics, deep learning, and predictive modeling are increasingly being integrated into glioma radiotherapy workflows. These AI-driven approaches have shown potential to enhance imaging interpretation, automate contouring, optimize treatment planning, and predict clinical outcomes. This review highlights the evolution of glioma radiotherapy, explores the emerging role of AI across various stages of radiotherapy, and discusses future directions for implementing personalized, adaptive, and data-driven strategies in clinical practice.
期刊介绍:
Cancer Imaging and Diagnosis is dedicated to the publication of results from clinical and research studies applied to cancer diagnosis and treatment. The section aims to publish studies from the entire field of cancer imaging: results from routine use of clinical imaging in both radiology and nuclear medicine, results from clinical trials, experimental molecular imaging in humans and small animals, research on new contrast agents in CT, MRI, ultrasound, publication of new technical applications and processing algorithms to improve the standardization of quantitative imaging and image guided interventions for the diagnosis and treatment of cancer.