骨的机械变形在骨细胞周围产生纳米级速度的间质液流动。

IF 4.8 3区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Frontiers in Bioengineering and Biotechnology Pub Date : 2025-09-12 eCollection Date: 2025-01-01 DOI:10.3389/fbioe.2025.1639788
Asier Muñoz, Annalisa De Paolis, Luis Cardoso, Alessandra Carriero
{"title":"骨的机械变形在骨细胞周围产生纳米级速度的间质液流动。","authors":"Asier Muñoz, Annalisa De Paolis, Luis Cardoso, Alessandra Carriero","doi":"10.3389/fbioe.2025.1639788","DOIUrl":null,"url":null,"abstract":"<p><p>Osteocytes play a critical role in bone mechanobiology, sensing and responding to mechanical loading through fluid flow within the lacunar-canalicular network (LCN). Experimental measurements of interstitial fluid flow in bone are difficult due to the embedded nature of osteocytes in the dense mineralized matrix. Therefore, accurate computer simulations of these processes are essential for understanding bone mechanobiology. Two computational approaches have mostly been used to characterize convective interstitial fluid flow in bone: poroelastic finite element (FE) models, which treat bone as a homogenized porous medium, and fluid-structure interaction (FSI) models, which incorporate explicit LCN microarchitecture. However, these approaches have predicted fluid velocities that differ by three to four orders of magnitude. Here, we investigate the reasons for this discrepancy and demonstrate how imposed pressure gradients influence the predicted fluid velocities. Using an FSI model of a single osteocyte embedded in the mineralized matrix, we show that when an imposed pore pressure gradient is smaller than that generated by bone matrix deformation under mechanical loading, the convective fluid velocities in the canaliculi reach ∼100 nm/s and scale with the applied strain. In contrast, applying higher pressure gradients decouples fluid flow from the solid bone matrix deformation, resulting in fluid velocities bigger than 100 μm/s that are insensitive to loading conditions. Future studies investigating the effect of load-induced convection flow on osteocyte mechanobiology should therefore apply small imposed pressure gradients to avoid overestimating interstitial flow and more realistically capture load-induced convective flow.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1639788"},"PeriodicalIF":4.8000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12463924/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanical deformations of bone generate interstitial fluid flow at nanoscale velocities around osteocytes.\",\"authors\":\"Asier Muñoz, Annalisa De Paolis, Luis Cardoso, Alessandra Carriero\",\"doi\":\"10.3389/fbioe.2025.1639788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteocytes play a critical role in bone mechanobiology, sensing and responding to mechanical loading through fluid flow within the lacunar-canalicular network (LCN). Experimental measurements of interstitial fluid flow in bone are difficult due to the embedded nature of osteocytes in the dense mineralized matrix. Therefore, accurate computer simulations of these processes are essential for understanding bone mechanobiology. Two computational approaches have mostly been used to characterize convective interstitial fluid flow in bone: poroelastic finite element (FE) models, which treat bone as a homogenized porous medium, and fluid-structure interaction (FSI) models, which incorporate explicit LCN microarchitecture. However, these approaches have predicted fluid velocities that differ by three to four orders of magnitude. Here, we investigate the reasons for this discrepancy and demonstrate how imposed pressure gradients influence the predicted fluid velocities. Using an FSI model of a single osteocyte embedded in the mineralized matrix, we show that when an imposed pore pressure gradient is smaller than that generated by bone matrix deformation under mechanical loading, the convective fluid velocities in the canaliculi reach ∼100 nm/s and scale with the applied strain. In contrast, applying higher pressure gradients decouples fluid flow from the solid bone matrix deformation, resulting in fluid velocities bigger than 100 μm/s that are insensitive to loading conditions. Future studies investigating the effect of load-induced convection flow on osteocyte mechanobiology should therefore apply small imposed pressure gradients to avoid overestimating interstitial flow and more realistically capture load-induced convective flow.</p>\",\"PeriodicalId\":12444,\"journal\":{\"name\":\"Frontiers in Bioengineering and Biotechnology\",\"volume\":\"13 \",\"pages\":\"1639788\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12463924/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Bioengineering and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fbioe.2025.1639788\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1639788","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

骨细胞在骨力学生物学中发挥关键作用,通过腔隙-管状网络(LCN)内的流体流动感知和响应机械负荷。由于骨细胞在致密矿化基质中的嵌入性质,骨间质液流动的实验测量是困难的。因此,这些过程的精确计算机模拟对于理解骨力学生物学至关重要。两种计算方法主要用于表征骨中的对流间隙流体流动:孔隙弹性有限元(FE)模型,将骨视为均质多孔介质,以及流体-结构相互作用(FSI)模型,其中包含明确的LCN微结构。然而,这些方法预测的流体速度相差三到四个数量级。在这里,我们研究了这种差异的原因,并展示了施加的压力梯度如何影响预测的流体速度。使用嵌入矿化基质中的单个骨细胞的FSI模型,我们表明,当施加的孔隙压力梯度小于机械载荷下骨基质变形产生的孔隙压力梯度时,小管中的对流流体速度达到~ 100 nm/s,并与施加的应变成比例。相比之下,施加更高的压力梯度将流体从固体骨基质变形中分离出来,导致流体速度大于100 μm/s,并且对加载条件不敏感。因此,未来研究载荷诱导的对流流动对骨细胞力学生物学的影响应该采用较小的施加压力梯度,以避免高估间隙流动,并更真实地捕捉载荷诱导的对流流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mechanical deformations of bone generate interstitial fluid flow at nanoscale velocities around osteocytes.

Mechanical deformations of bone generate interstitial fluid flow at nanoscale velocities around osteocytes.

Mechanical deformations of bone generate interstitial fluid flow at nanoscale velocities around osteocytes.

Mechanical deformations of bone generate interstitial fluid flow at nanoscale velocities around osteocytes.

Osteocytes play a critical role in bone mechanobiology, sensing and responding to mechanical loading through fluid flow within the lacunar-canalicular network (LCN). Experimental measurements of interstitial fluid flow in bone are difficult due to the embedded nature of osteocytes in the dense mineralized matrix. Therefore, accurate computer simulations of these processes are essential for understanding bone mechanobiology. Two computational approaches have mostly been used to characterize convective interstitial fluid flow in bone: poroelastic finite element (FE) models, which treat bone as a homogenized porous medium, and fluid-structure interaction (FSI) models, which incorporate explicit LCN microarchitecture. However, these approaches have predicted fluid velocities that differ by three to four orders of magnitude. Here, we investigate the reasons for this discrepancy and demonstrate how imposed pressure gradients influence the predicted fluid velocities. Using an FSI model of a single osteocyte embedded in the mineralized matrix, we show that when an imposed pore pressure gradient is smaller than that generated by bone matrix deformation under mechanical loading, the convective fluid velocities in the canaliculi reach ∼100 nm/s and scale with the applied strain. In contrast, applying higher pressure gradients decouples fluid flow from the solid bone matrix deformation, resulting in fluid velocities bigger than 100 μm/s that are insensitive to loading conditions. Future studies investigating the effect of load-induced convection flow on osteocyte mechanobiology should therefore apply small imposed pressure gradients to avoid overestimating interstitial flow and more realistically capture load-induced convective flow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Bioengineering and Biotechnology
Frontiers in Bioengineering and Biotechnology Chemical Engineering-Bioengineering
CiteScore
8.30
自引率
5.30%
发文量
2270
审稿时长
12 weeks
期刊介绍: The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs. In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信