Andrea Martins da Silva, Ilya Violeta Llanos Salamanca, Michel Batista, Fabricio Klerynton Marchini, Antonio Jorge Tempone, Erich Loza Telleria, Yara Maria Traub-Csekö
{"title":"转染dsRNA病毒模拟物的长鼻Lutzomyia LL5细胞可溶性分泌蛋白的蛋白质组学分析:细胞防御和修复信号的见解","authors":"Andrea Martins da Silva, Ilya Violeta Llanos Salamanca, Michel Batista, Fabricio Klerynton Marchini, Antonio Jorge Tempone, Erich Loza Telleria, Yara Maria Traub-Csekö","doi":"10.3389/fcimb.2025.1638505","DOIUrl":null,"url":null,"abstract":"<p><p>Sand flies, which transmit diseases like leishmaniases, bartonellosis, and certain viruses, pose a significant public health threat. Our research focuses on the immune responses of <i>Lutzomyia longipalpis</i>, the primary vector for visceral leishmaniasis in the Americas. We use <i>L. longipalpis</i> LL5 cells as a model to study how sand flies respond to pathogens. These cells exhibit robust immune reactions, producing molecules mainly regulated by the Toll, IMD, Jak-STAT, and RNAi pathways. In previous studies, we detected a non-specific antiviral response in LL5 cells following double-stranded RNAs (dsRNAs) transfection. A previous complete secretome of these cells showed molecules resembling an interferon-like antiviral response when transfected with polyinosinic-polycytidylic acid (poly I:C), a synthetic dsRNA analog. In the current study, we analyzed soluble proteins secreted by LL5 cells after poly I:C transfection. Using comparative mass spectrometry, we examined protein composition of conditioned media depleted of exosomes at 24 h and 48 h. Most proteins uniquely expressed in the transfected groups had low abundance compared to the overall expressed proteins. Interactome prediction analysis revealed that at 24 h, the proteins uniquely found in the secretome of the transfected group were involved in RNA degradation and purine metabolism, while at 48 h they were linked to ribosomal proteins and signaling pathways such as Hedgehog, Transforming Growth Factor-beta (TGF-β), and Wingless/integrated (Wnt). We highlight increased abundance of the TGF-β-induced protein ig-h3 (24 h and 48 h), a Toll-like receptor 3 (48 h), and a hemocytin (48 h) in the secretion of transfected groups compared to the controls. We also performed an interaction analysis of proteins more secreted by the treated group at 24 h and 48 h. Unlike the interactome of uniquely identified proteins, few interactions were observed at 24 h, with a predominance of extracellular matrix and cell adhesion proteins. The set of proteins more secreted at 48 h presented more interactions than at 24 h, with emphasis on catabolic processes, including RNA degradation. These findings indicate that poly I:C transfection in LL5 cells induces the secretion of proteins involved in cellular defense and repair, revealing molecules involved in the LL5 non-specific antiviral response.</p>","PeriodicalId":12458,"journal":{"name":"Frontiers in Cellular and Infection Microbiology","volume":"15 ","pages":"1638505"},"PeriodicalIF":4.8000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12460361/pdf/","citationCount":"0","resultStr":"{\"title\":\"Proteomics analysis of soluble secreted proteins of <i>Lutzomyia longipalpis</i> LL5 cells transfected with a dsRNA viral mimic: insights into cellular defense and repair signals.\",\"authors\":\"Andrea Martins da Silva, Ilya Violeta Llanos Salamanca, Michel Batista, Fabricio Klerynton Marchini, Antonio Jorge Tempone, Erich Loza Telleria, Yara Maria Traub-Csekö\",\"doi\":\"10.3389/fcimb.2025.1638505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sand flies, which transmit diseases like leishmaniases, bartonellosis, and certain viruses, pose a significant public health threat. Our research focuses on the immune responses of <i>Lutzomyia longipalpis</i>, the primary vector for visceral leishmaniasis in the Americas. We use <i>L. longipalpis</i> LL5 cells as a model to study how sand flies respond to pathogens. These cells exhibit robust immune reactions, producing molecules mainly regulated by the Toll, IMD, Jak-STAT, and RNAi pathways. In previous studies, we detected a non-specific antiviral response in LL5 cells following double-stranded RNAs (dsRNAs) transfection. A previous complete secretome of these cells showed molecules resembling an interferon-like antiviral response when transfected with polyinosinic-polycytidylic acid (poly I:C), a synthetic dsRNA analog. In the current study, we analyzed soluble proteins secreted by LL5 cells after poly I:C transfection. Using comparative mass spectrometry, we examined protein composition of conditioned media depleted of exosomes at 24 h and 48 h. Most proteins uniquely expressed in the transfected groups had low abundance compared to the overall expressed proteins. Interactome prediction analysis revealed that at 24 h, the proteins uniquely found in the secretome of the transfected group were involved in RNA degradation and purine metabolism, while at 48 h they were linked to ribosomal proteins and signaling pathways such as Hedgehog, Transforming Growth Factor-beta (TGF-β), and Wingless/integrated (Wnt). We highlight increased abundance of the TGF-β-induced protein ig-h3 (24 h and 48 h), a Toll-like receptor 3 (48 h), and a hemocytin (48 h) in the secretion of transfected groups compared to the controls. We also performed an interaction analysis of proteins more secreted by the treated group at 24 h and 48 h. Unlike the interactome of uniquely identified proteins, few interactions were observed at 24 h, with a predominance of extracellular matrix and cell adhesion proteins. The set of proteins more secreted at 48 h presented more interactions than at 24 h, with emphasis on catabolic processes, including RNA degradation. These findings indicate that poly I:C transfection in LL5 cells induces the secretion of proteins involved in cellular defense and repair, revealing molecules involved in the LL5 non-specific antiviral response.</p>\",\"PeriodicalId\":12458,\"journal\":{\"name\":\"Frontiers in Cellular and Infection Microbiology\",\"volume\":\"15 \",\"pages\":\"1638505\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12460361/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Cellular and Infection Microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fcimb.2025.1638505\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular and Infection Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fcimb.2025.1638505","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Proteomics analysis of soluble secreted proteins of Lutzomyia longipalpis LL5 cells transfected with a dsRNA viral mimic: insights into cellular defense and repair signals.
Sand flies, which transmit diseases like leishmaniases, bartonellosis, and certain viruses, pose a significant public health threat. Our research focuses on the immune responses of Lutzomyia longipalpis, the primary vector for visceral leishmaniasis in the Americas. We use L. longipalpis LL5 cells as a model to study how sand flies respond to pathogens. These cells exhibit robust immune reactions, producing molecules mainly regulated by the Toll, IMD, Jak-STAT, and RNAi pathways. In previous studies, we detected a non-specific antiviral response in LL5 cells following double-stranded RNAs (dsRNAs) transfection. A previous complete secretome of these cells showed molecules resembling an interferon-like antiviral response when transfected with polyinosinic-polycytidylic acid (poly I:C), a synthetic dsRNA analog. In the current study, we analyzed soluble proteins secreted by LL5 cells after poly I:C transfection. Using comparative mass spectrometry, we examined protein composition of conditioned media depleted of exosomes at 24 h and 48 h. Most proteins uniquely expressed in the transfected groups had low abundance compared to the overall expressed proteins. Interactome prediction analysis revealed that at 24 h, the proteins uniquely found in the secretome of the transfected group were involved in RNA degradation and purine metabolism, while at 48 h they were linked to ribosomal proteins and signaling pathways such as Hedgehog, Transforming Growth Factor-beta (TGF-β), and Wingless/integrated (Wnt). We highlight increased abundance of the TGF-β-induced protein ig-h3 (24 h and 48 h), a Toll-like receptor 3 (48 h), and a hemocytin (48 h) in the secretion of transfected groups compared to the controls. We also performed an interaction analysis of proteins more secreted by the treated group at 24 h and 48 h. Unlike the interactome of uniquely identified proteins, few interactions were observed at 24 h, with a predominance of extracellular matrix and cell adhesion proteins. The set of proteins more secreted at 48 h presented more interactions than at 24 h, with emphasis on catabolic processes, including RNA degradation. These findings indicate that poly I:C transfection in LL5 cells induces the secretion of proteins involved in cellular defense and repair, revealing molecules involved in the LL5 non-specific antiviral response.
期刊介绍:
Frontiers in Cellular and Infection Microbiology is a leading specialty journal, publishing rigorously peer-reviewed research across all pathogenic microorganisms and their interaction with their hosts. Chief Editor Yousef Abu Kwaik, University of Louisville is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
Frontiers in Cellular and Infection Microbiology includes research on bacteria, fungi, parasites, viruses, endosymbionts, prions and all microbial pathogens as well as the microbiota and its effect on health and disease in various hosts. The research approaches include molecular microbiology, cellular microbiology, gene regulation, proteomics, signal transduction, pathogenic evolution, genomics, structural biology, and virulence factors as well as model hosts. Areas of research to counteract infectious agents by the host include the host innate and adaptive immune responses as well as metabolic restrictions to various pathogenic microorganisms, vaccine design and development against various pathogenic microorganisms, and the mechanisms of antibiotic resistance and its countermeasures.