癌症代谢与DNA修复:治疗抵抗的隐藏联系。

IF 2.7 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
BioEssays Pub Date : 2025-09-28 DOI:10.1002/bies.70073
Chunzhang Yang
{"title":"癌症代谢与DNA修复:治疗抵抗的隐藏联系。","authors":"Chunzhang Yang","doi":"10.1002/bies.70073","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer cells exhibit reprogrammed metabolic pathways to sustain aggressive phenotypes, including continuous cell division, stemness, invasion, and metastasis. Emerging evidence suggests that these metabolic adaptations profoundly impact DNA repair pathways, which contribute to the responses to therapy and influence overall outcomes. Metabolic processes such as the Warburg effect, nicotinamide adenine dinucleotide (NAD) metabolism, glutamine metabolism, and one-carbon metabolism support DNA repair by expanding the metabolite pool and facilitating post-translational modifications. Conversely, oncometabolites impair DNA repair pathways through epigenetic reprogramming, thereby promoting genomic instability. This review highlights recent discoveries that elucidate the intricate connections between metabolic hallmarks in cancer cells and DNA repair mechanisms, offering insights into potential therapeutic targets for future cancer treatments.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":" ","pages":"e70073"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cancer Metabolism Meets DNA Repair: The Hidden Link to Therapy Resistance.\",\"authors\":\"Chunzhang Yang\",\"doi\":\"10.1002/bies.70073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer cells exhibit reprogrammed metabolic pathways to sustain aggressive phenotypes, including continuous cell division, stemness, invasion, and metastasis. Emerging evidence suggests that these metabolic adaptations profoundly impact DNA repair pathways, which contribute to the responses to therapy and influence overall outcomes. Metabolic processes such as the Warburg effect, nicotinamide adenine dinucleotide (NAD) metabolism, glutamine metabolism, and one-carbon metabolism support DNA repair by expanding the metabolite pool and facilitating post-translational modifications. Conversely, oncometabolites impair DNA repair pathways through epigenetic reprogramming, thereby promoting genomic instability. This review highlights recent discoveries that elucidate the intricate connections between metabolic hallmarks in cancer cells and DNA repair mechanisms, offering insights into potential therapeutic targets for future cancer treatments.</p>\",\"PeriodicalId\":9264,\"journal\":{\"name\":\"BioEssays\",\"volume\":\" \",\"pages\":\"e70073\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioEssays\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/bies.70073\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEssays","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/bies.70073","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

癌细胞表现出重编程的代谢途径来维持侵袭性表型,包括连续的细胞分裂、干性、侵袭和转移。新出现的证据表明,这些代谢适应深刻地影响DNA修复途径,这有助于对治疗的反应并影响总体结果。代谢过程,如Warburg效应、烟酰胺腺嘌呤二核苷酸(NAD)代谢、谷氨酰胺代谢和单碳代谢,通过扩大代谢物库和促进翻译后修饰来支持DNA修复。相反,肿瘤代谢物通过表观遗传重编程损害DNA修复途径,从而促进基因组不稳定。本综述重点介绍了阐明癌细胞代谢标志与DNA修复机制之间复杂联系的最新发现,为未来癌症治疗的潜在治疗靶点提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cancer Metabolism Meets DNA Repair: The Hidden Link to Therapy Resistance.

Cancer cells exhibit reprogrammed metabolic pathways to sustain aggressive phenotypes, including continuous cell division, stemness, invasion, and metastasis. Emerging evidence suggests that these metabolic adaptations profoundly impact DNA repair pathways, which contribute to the responses to therapy and influence overall outcomes. Metabolic processes such as the Warburg effect, nicotinamide adenine dinucleotide (NAD) metabolism, glutamine metabolism, and one-carbon metabolism support DNA repair by expanding the metabolite pool and facilitating post-translational modifications. Conversely, oncometabolites impair DNA repair pathways through epigenetic reprogramming, thereby promoting genomic instability. This review highlights recent discoveries that elucidate the intricate connections between metabolic hallmarks in cancer cells and DNA repair mechanisms, offering insights into potential therapeutic targets for future cancer treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioEssays
BioEssays 生物-生化与分子生物学
CiteScore
7.30
自引率
2.50%
发文量
167
审稿时长
4-8 weeks
期刊介绍: molecular – cellular – biomedical – physiology – translational research – systems - hypotheses encouraged BioEssays is a peer-reviewed, review-and-discussion journal. Our aims are to publish novel insights, forward-looking reviews and commentaries in contemporary biology with a molecular, genetic, cellular, or physiological dimension, and serve as a discussion forum for new ideas in these areas. An additional goal is to encourage transdisciplinarity and integrative biology in the context of organismal studies, systems approaches, through to ecosystems, where appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信