用支撑膜挠曲分析贴壁细胞片的力学性能。

IF 2.4 4区 生物学 Q3 BIOPHYSICS
Yuri M Efremov, Anastasia M Subbot, Ivan A Novikov, Sergei E Avetisov, Peter S Timashev
{"title":"用支撑膜挠曲分析贴壁细胞片的力学性能。","authors":"Yuri M Efremov, Anastasia M Subbot, Ivan A Novikov, Sergei E Avetisov, Peter S Timashev","doi":"10.1007/s00249-025-01798-0","DOIUrl":null,"url":null,"abstract":"<p><p>Multicellular structures, including cell sheets, are actively used as model systems to study intercellular interactions and can be applied in different areas of regenerative medicine. In this paper, we present a novel approach for measuring mechanical properties of cell sheets based on a simple experimental setup and numerical simulations. The advantage of the present approach is the relative ease of the sample preparation, while previous systems for the tensile tests required specialized and sensitive equipment. With the developed approach, the cell sheet on a polymer membrane is mounted in the holder on one side, and then deflection of the free end of the membrane is measured. The deflection of this cantilever-like construction depends on the elastic modulus of the membrane (which is known) and cell sheet, and also from the traction force generated by the cell sheet. By involving an experimental step with relaxing the traction force and by conducting finite element simulations, both traction force and elastic properties of the cell sheet can be estimated. We performed such measurements on cell sheets from keratocytes from corneal explants and confirmed that the developed approach is applicable for measurement of both traction force and elastic modulus of cell sheets.</p>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical properties of adherent cell sheets analyzed by deflection of supporting membrane.\",\"authors\":\"Yuri M Efremov, Anastasia M Subbot, Ivan A Novikov, Sergei E Avetisov, Peter S Timashev\",\"doi\":\"10.1007/s00249-025-01798-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multicellular structures, including cell sheets, are actively used as model systems to study intercellular interactions and can be applied in different areas of regenerative medicine. In this paper, we present a novel approach for measuring mechanical properties of cell sheets based on a simple experimental setup and numerical simulations. The advantage of the present approach is the relative ease of the sample preparation, while previous systems for the tensile tests required specialized and sensitive equipment. With the developed approach, the cell sheet on a polymer membrane is mounted in the holder on one side, and then deflection of the free end of the membrane is measured. The deflection of this cantilever-like construction depends on the elastic modulus of the membrane (which is known) and cell sheet, and also from the traction force generated by the cell sheet. By involving an experimental step with relaxing the traction force and by conducting finite element simulations, both traction force and elastic properties of the cell sheet can be estimated. We performed such measurements on cell sheets from keratocytes from corneal explants and confirmed that the developed approach is applicable for measurement of both traction force and elastic modulus of cell sheets.</p>\",\"PeriodicalId\":548,\"journal\":{\"name\":\"European Biophysics Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Biophysics Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1007/s00249-025-01798-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1007/s00249-025-01798-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

包括细胞片在内的多细胞结构被积极用作研究细胞间相互作用的模型系统,并可应用于再生医学的不同领域。在本文中,我们提出了一种基于简单实验装置和数值模拟的测量细胞片力学性能的新方法。目前方法的优点是样品制备相对容易,而以前的拉伸试验系统需要专门和敏感的设备。利用所开发的方法,将聚合物膜上的细胞片安装在一侧的支架上,然后测量膜的自由端挠度。这种悬臂式结构的挠度取决于膜(这是已知的)和细胞片的弹性模量,也取决于细胞片产生的牵引力。通过放松牵引力的实验步骤和进行有限元模拟,可以估计电池片的牵引力和弹性特性。我们对角膜外植体的角质细胞进行了这样的测量,并证实了所开发的方法适用于测量细胞片的牵引力和弹性模量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical properties of adherent cell sheets analyzed by deflection of supporting membrane.

Multicellular structures, including cell sheets, are actively used as model systems to study intercellular interactions and can be applied in different areas of regenerative medicine. In this paper, we present a novel approach for measuring mechanical properties of cell sheets based on a simple experimental setup and numerical simulations. The advantage of the present approach is the relative ease of the sample preparation, while previous systems for the tensile tests required specialized and sensitive equipment. With the developed approach, the cell sheet on a polymer membrane is mounted in the holder on one side, and then deflection of the free end of the membrane is measured. The deflection of this cantilever-like construction depends on the elastic modulus of the membrane (which is known) and cell sheet, and also from the traction force generated by the cell sheet. By involving an experimental step with relaxing the traction force and by conducting finite element simulations, both traction force and elastic properties of the cell sheet can be estimated. We performed such measurements on cell sheets from keratocytes from corneal explants and confirmed that the developed approach is applicable for measurement of both traction force and elastic modulus of cell sheets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Biophysics Journal
European Biophysics Journal 生物-生物物理
CiteScore
4.30
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context. Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance. Principal areas of interest include: - Structure and dynamics of biological macromolecules - Membrane biophysics and ion channels - Cell biophysics and organisation - Macromolecular assemblies - Biophysical methods and instrumentation - Advanced microscopics - System dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信