Tayaba Ismail , Yong-Gyu Jeong , Hyun-Kyung Lee , Hongchan Lee , Youni Kim , Jun-Yeong Lee , Sang-Hyun Kim , Hong-Yeoul Ryu , Taeg Kyu Kwon , Tae Joo Park , Taejoon Kwon , Dongwoo Khang , Hyun-Shik Lee
{"title":"金纳米颗粒胚胎毒性和致畸性的体内分析:强调表面化学和毒理学反应。","authors":"Tayaba Ismail , Yong-Gyu Jeong , Hyun-Kyung Lee , Hongchan Lee , Youni Kim , Jun-Yeong Lee , Sang-Hyun Kim , Hong-Yeoul Ryu , Taeg Kyu Kwon , Tae Joo Park , Taejoon Kwon , Dongwoo Khang , Hyun-Shik Lee","doi":"10.1016/j.ecoenv.2025.119111","DOIUrl":null,"url":null,"abstract":"<div><div>The surface chemistry and physical characteristics of gold nanoparticles (AuNPs) influence their biological interactions and toxicological responses. However, the toxicological effects of surface charge on embryonic development remain poorly understood. In this study, we investigated the <em>in vivo</em> developmental toxicity and teratogenicity of differentially charged AuNPs during early embryogenesis of <em>Xenopus laevis</em> – a sensitive and ecologically relevant animal model for developmental toxicology. Our study indicated that cationic AuNPs induced significant embryotoxicity and teratogenicity including lethality, phenotypical abnormalities and disruption of gene expression associated with liver, digestive tract, neural, and eye development. In contrast, such effects, including lethality and malformations associated with changes in gene expression were not observed in embryos exposed to anionic AuNPs. In addition, cationic AuNPs affected ciliogenesis by reducing the number of multiciliated cells and disturbing cilia-driven fluid flow, a critical endpoint in nanoparticle-induced toxicity. Furthermore, gene expression profiles suggested that necroptosis might be the mechanism of cell death in embryos exposed to cationic AuNPs. Notably, the surface charge dependent AuNPs exposure leading to impaired ciliogenesis and activation of necroptosis during embryogenesis represents significant endpoints in nanotoxicology. Unlike previous studies focusing on zebrafish or rodents, this study provides the first systematic evaluation in <em>X. laevis</em> embryos with identical nanoparticle cores but distinct surface chemistries. Our study underscores the significance of nanoparticle surface functionalization in determining developmental toxicity and pinpoints the ecological risks imposed by cationic AuNPs during early embryonic development in aquatic systems.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"304 ","pages":"Article 119111"},"PeriodicalIF":6.1000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vivo analyses of embryotoxicity and teratogenicity of gold nanoparticles: Emphasis on the surface chemistry and toxicological responses\",\"authors\":\"Tayaba Ismail , Yong-Gyu Jeong , Hyun-Kyung Lee , Hongchan Lee , Youni Kim , Jun-Yeong Lee , Sang-Hyun Kim , Hong-Yeoul Ryu , Taeg Kyu Kwon , Tae Joo Park , Taejoon Kwon , Dongwoo Khang , Hyun-Shik Lee\",\"doi\":\"10.1016/j.ecoenv.2025.119111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The surface chemistry and physical characteristics of gold nanoparticles (AuNPs) influence their biological interactions and toxicological responses. However, the toxicological effects of surface charge on embryonic development remain poorly understood. In this study, we investigated the <em>in vivo</em> developmental toxicity and teratogenicity of differentially charged AuNPs during early embryogenesis of <em>Xenopus laevis</em> – a sensitive and ecologically relevant animal model for developmental toxicology. Our study indicated that cationic AuNPs induced significant embryotoxicity and teratogenicity including lethality, phenotypical abnormalities and disruption of gene expression associated with liver, digestive tract, neural, and eye development. In contrast, such effects, including lethality and malformations associated with changes in gene expression were not observed in embryos exposed to anionic AuNPs. In addition, cationic AuNPs affected ciliogenesis by reducing the number of multiciliated cells and disturbing cilia-driven fluid flow, a critical endpoint in nanoparticle-induced toxicity. Furthermore, gene expression profiles suggested that necroptosis might be the mechanism of cell death in embryos exposed to cationic AuNPs. Notably, the surface charge dependent AuNPs exposure leading to impaired ciliogenesis and activation of necroptosis during embryogenesis represents significant endpoints in nanotoxicology. Unlike previous studies focusing on zebrafish or rodents, this study provides the first systematic evaluation in <em>X. laevis</em> embryos with identical nanoparticle cores but distinct surface chemistries. Our study underscores the significance of nanoparticle surface functionalization in determining developmental toxicity and pinpoints the ecological risks imposed by cationic AuNPs during early embryonic development in aquatic systems.</div></div>\",\"PeriodicalId\":303,\"journal\":{\"name\":\"Ecotoxicology and Environmental Safety\",\"volume\":\"304 \",\"pages\":\"Article 119111\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology and Environmental Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147651325014563\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651325014563","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
In vivo analyses of embryotoxicity and teratogenicity of gold nanoparticles: Emphasis on the surface chemistry and toxicological responses
The surface chemistry and physical characteristics of gold nanoparticles (AuNPs) influence their biological interactions and toxicological responses. However, the toxicological effects of surface charge on embryonic development remain poorly understood. In this study, we investigated the in vivo developmental toxicity and teratogenicity of differentially charged AuNPs during early embryogenesis of Xenopus laevis – a sensitive and ecologically relevant animal model for developmental toxicology. Our study indicated that cationic AuNPs induced significant embryotoxicity and teratogenicity including lethality, phenotypical abnormalities and disruption of gene expression associated with liver, digestive tract, neural, and eye development. In contrast, such effects, including lethality and malformations associated with changes in gene expression were not observed in embryos exposed to anionic AuNPs. In addition, cationic AuNPs affected ciliogenesis by reducing the number of multiciliated cells and disturbing cilia-driven fluid flow, a critical endpoint in nanoparticle-induced toxicity. Furthermore, gene expression profiles suggested that necroptosis might be the mechanism of cell death in embryos exposed to cationic AuNPs. Notably, the surface charge dependent AuNPs exposure leading to impaired ciliogenesis and activation of necroptosis during embryogenesis represents significant endpoints in nanotoxicology. Unlike previous studies focusing on zebrafish or rodents, this study provides the first systematic evaluation in X. laevis embryos with identical nanoparticle cores but distinct surface chemistries. Our study underscores the significance of nanoparticle surface functionalization in determining developmental toxicity and pinpoints the ecological risks imposed by cationic AuNPs during early embryonic development in aquatic systems.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.