{"title":"LKDC4铜绿假单胞菌降解苯氧烷酸类除草剂的研究","authors":"Loveleen Kaur, Saurabh Bhatti, Dinesh Raj Modi","doi":"10.1007/s10532-025-10189-3","DOIUrl":null,"url":null,"abstract":"<div><p>Phenoxyalkanoic acid herbicides are widely used in agricultural lands to kill the weeds in crop fields and have a very detrimental effect on soil’s natural fertility and its microbiome. Bacterial culture isolated from these lands in the presence of herbicides group 2,4-Dichlorophenoxyacetic acid (2,4-D) and 2-Methyl-4-chlorophenoxy acetic acid (MCPA) belongs to plant growth hormone auxin. Strain LKDC4 <i>Pseudomonas aeruginosa</i> exposed to both herbicides at a range of concentrations 300 mg/L, 500 mg/L and 700 mg/L for 5 days without any enrichment culture, providing 2,4-D and MCPA as a carbon source for survival. LKDC4 shows a maximum number of cell growth in 2,4-D herbicide at the lowest concentration 300 mg/L (1.35 mM) comparatively with the highest concentration 700 mg/L (3.16 mM) of optical density 0.85 and 0.78 at 600 nm, respectively. At the same time, this strain shows a similar number of cell growth at all three concentrations 300 mg/L, 500 mg/L, and 700 mg/L of 1.49 mM, 2.49 mM, and 3.48 mM respectively of optical density 0.90 at 600 nm. The degradation efficiency of the <i>Pseudomonas aeruginosa</i> LKDC4 was 70 to 80% of 2,4-D herbicide when the growth medium contained 0.2% glucose as the only carbon source after 5 days at optimum conditions. The degradation of MCPA was 100% at 300 mg/L and 700 mg/L, while 81% degradation at 500 mg/L after 5 days of incubation at optimum conditions. <i>P. aeruginosa</i> can degrade both herbicides and survive well in their presence, making it a tolerant microbial strain.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradation of phenoxyalkanoic acid herbicides by isolated bacterial strain LKDC4 Pseudomonas aeruginosa\",\"authors\":\"Loveleen Kaur, Saurabh Bhatti, Dinesh Raj Modi\",\"doi\":\"10.1007/s10532-025-10189-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phenoxyalkanoic acid herbicides are widely used in agricultural lands to kill the weeds in crop fields and have a very detrimental effect on soil’s natural fertility and its microbiome. Bacterial culture isolated from these lands in the presence of herbicides group 2,4-Dichlorophenoxyacetic acid (2,4-D) and 2-Methyl-4-chlorophenoxy acetic acid (MCPA) belongs to plant growth hormone auxin. Strain LKDC4 <i>Pseudomonas aeruginosa</i> exposed to both herbicides at a range of concentrations 300 mg/L, 500 mg/L and 700 mg/L for 5 days without any enrichment culture, providing 2,4-D and MCPA as a carbon source for survival. LKDC4 shows a maximum number of cell growth in 2,4-D herbicide at the lowest concentration 300 mg/L (1.35 mM) comparatively with the highest concentration 700 mg/L (3.16 mM) of optical density 0.85 and 0.78 at 600 nm, respectively. At the same time, this strain shows a similar number of cell growth at all three concentrations 300 mg/L, 500 mg/L, and 700 mg/L of 1.49 mM, 2.49 mM, and 3.48 mM respectively of optical density 0.90 at 600 nm. The degradation efficiency of the <i>Pseudomonas aeruginosa</i> LKDC4 was 70 to 80% of 2,4-D herbicide when the growth medium contained 0.2% glucose as the only carbon source after 5 days at optimum conditions. The degradation of MCPA was 100% at 300 mg/L and 700 mg/L, while 81% degradation at 500 mg/L after 5 days of incubation at optimum conditions. <i>P. aeruginosa</i> can degrade both herbicides and survive well in their presence, making it a tolerant microbial strain.</p></div>\",\"PeriodicalId\":486,\"journal\":{\"name\":\"Biodegradation\",\"volume\":\"36 5\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodegradation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10532-025-10189-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-025-10189-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Degradation of phenoxyalkanoic acid herbicides by isolated bacterial strain LKDC4 Pseudomonas aeruginosa
Phenoxyalkanoic acid herbicides are widely used in agricultural lands to kill the weeds in crop fields and have a very detrimental effect on soil’s natural fertility and its microbiome. Bacterial culture isolated from these lands in the presence of herbicides group 2,4-Dichlorophenoxyacetic acid (2,4-D) and 2-Methyl-4-chlorophenoxy acetic acid (MCPA) belongs to plant growth hormone auxin. Strain LKDC4 Pseudomonas aeruginosa exposed to both herbicides at a range of concentrations 300 mg/L, 500 mg/L and 700 mg/L for 5 days without any enrichment culture, providing 2,4-D and MCPA as a carbon source for survival. LKDC4 shows a maximum number of cell growth in 2,4-D herbicide at the lowest concentration 300 mg/L (1.35 mM) comparatively with the highest concentration 700 mg/L (3.16 mM) of optical density 0.85 and 0.78 at 600 nm, respectively. At the same time, this strain shows a similar number of cell growth at all three concentrations 300 mg/L, 500 mg/L, and 700 mg/L of 1.49 mM, 2.49 mM, and 3.48 mM respectively of optical density 0.90 at 600 nm. The degradation efficiency of the Pseudomonas aeruginosa LKDC4 was 70 to 80% of 2,4-D herbicide when the growth medium contained 0.2% glucose as the only carbon source after 5 days at optimum conditions. The degradation of MCPA was 100% at 300 mg/L and 700 mg/L, while 81% degradation at 500 mg/L after 5 days of incubation at optimum conditions. P. aeruginosa can degrade both herbicides and survive well in their presence, making it a tolerant microbial strain.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.