DNA甲基化控制丹参酮合成基因的表达和丹参酮在丹参和丹参酮体内的积累。

IF 5.7 1区 生物学 Q1 PLANT SCIENCES
Li-Wei Liu, Xin-Ru Du, Rui Chu, Xin-Yu He, Yi-Wen Chen, Hua-Qian You, Itezaz Younas, Yi-Hong Li, Wei Li, Rui Zhang, Ye-Long Sheng, Ming Zhou, Qi Cui, Zong-Suo Liang, Dong-Feng Yang
{"title":"DNA甲基化控制丹参酮合成基因的表达和丹参酮在丹参和丹参酮体内的积累。","authors":"Li-Wei Liu,&nbsp;Xin-Ru Du,&nbsp;Rui Chu,&nbsp;Xin-Yu He,&nbsp;Yi-Wen Chen,&nbsp;Hua-Qian You,&nbsp;Itezaz Younas,&nbsp;Yi-Hong Li,&nbsp;Wei Li,&nbsp;Rui Zhang,&nbsp;Ye-Long Sheng,&nbsp;Ming Zhou,&nbsp;Qi Cui,&nbsp;Zong-Suo Liang,&nbsp;Dong-Feng Yang","doi":"10.1111/tpj.70494","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>DNA methylation plays pivotal roles in regulating gene expression and the secondary metabolism in plants. <i>Salvia miltiorrhiza</i> and <i>Salvia bowleyana</i> are traditional Chinese medicinal plants with roots enriched with tanshinone components. However, the regulatory mechanism of DNA methylation on tanshinone production remains elusive. Here, we analyzed 30-day-old hairy roots of <i>S. miltiorrhiza</i> and <i>S. bowleyana</i> using targeted high-performance liquid chromatography analysis and found significantly higher tanshinone content in <i>S. miltiorrhiza</i>. Whole-genome bisulfite sequencing revealed elevated DNA methylation levels in <i>S. miltiorrhiza</i>, potentially due to the upregulation of methylation-related genes, including <i>DOMAINS REARRANGED METHYLTRANSFERASE 1</i> (<i>DRM1</i>), <i>DECREASE IN DNA METHYLATION 1</i> (<i>DDM1</i>), <i>CHROMOMETHYLASE 2</i> (<i>CMT1</i>), and <i>CHROMOMETHYLASE 3</i> (<i>CMT3</i>), alongside the low expression of the demethylase gene REPRESSOR OF SILENCING 1 (<i>ROS1</i>) in <i>S. miltiorrhiza</i>. Additionally, four genes that are involved in tanshinone biosynthesis, including <i>1-DEOXY-<span>D</span>-XYLULOSE-5-PHOSPHATE REDUCTASE</i> (<i>DXS1</i>), <i>GERANYLGERANYL DIPHOSPHATE SYNTHASE</i> (<i>GGPPS2</i>), <i>4-HYDROXY-3-METHYLBUT-2-ENYL PYROPHOSPHATE REDUCTASE</i> (<i>HDR2</i>), and <i>COPALYL PYROPHOSPHATE SYNTHASE</i> (<i>CPS3</i>), showed lower methylation levels in the promoters of <i>DXS1</i>, <i>GGPPS2</i>, and <i>CPS3</i> and a higher DNA methylation level in the gene body of <i>HDR2</i> in <i>S. miltiorrhiza</i>, which may lead to their high expression and the accumulation of tanshinones. Consistently, overexpression of the <i>SmCMT3</i> in <i>S. miltiorrhiza</i> significantly reduced the contents of cryptotanshinone, tanshinone I, and tanshinone IIA. Transcriptomic and methylome analyses confirmed that the expression levels of the tanshinone biosynthesis-related genes, including <i>SmMK</i>, <i>SmCPS1</i>, <i>SmDXS2,</i> and <i>SmAACT1</i>, were correlated with their promoter or gene body DNA methylation levels. Our findings reveal that DNA methylation critically regulates tanshinone biosynthesis in <i>S. miltiorrhiza</i> and <i>S. bowleyana</i>, offering valuable insights for breeding.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"123 6","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA methylation controls the expression of tanshinone synthesis genes and the tanshinone accumulation in Salvia miltiorrhiza and Salvia bowleyana\",\"authors\":\"Li-Wei Liu,&nbsp;Xin-Ru Du,&nbsp;Rui Chu,&nbsp;Xin-Yu He,&nbsp;Yi-Wen Chen,&nbsp;Hua-Qian You,&nbsp;Itezaz Younas,&nbsp;Yi-Hong Li,&nbsp;Wei Li,&nbsp;Rui Zhang,&nbsp;Ye-Long Sheng,&nbsp;Ming Zhou,&nbsp;Qi Cui,&nbsp;Zong-Suo Liang,&nbsp;Dong-Feng Yang\",\"doi\":\"10.1111/tpj.70494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>DNA methylation plays pivotal roles in regulating gene expression and the secondary metabolism in plants. <i>Salvia miltiorrhiza</i> and <i>Salvia bowleyana</i> are traditional Chinese medicinal plants with roots enriched with tanshinone components. However, the regulatory mechanism of DNA methylation on tanshinone production remains elusive. Here, we analyzed 30-day-old hairy roots of <i>S. miltiorrhiza</i> and <i>S. bowleyana</i> using targeted high-performance liquid chromatography analysis and found significantly higher tanshinone content in <i>S. miltiorrhiza</i>. Whole-genome bisulfite sequencing revealed elevated DNA methylation levels in <i>S. miltiorrhiza</i>, potentially due to the upregulation of methylation-related genes, including <i>DOMAINS REARRANGED METHYLTRANSFERASE 1</i> (<i>DRM1</i>), <i>DECREASE IN DNA METHYLATION 1</i> (<i>DDM1</i>), <i>CHROMOMETHYLASE 2</i> (<i>CMT1</i>), and <i>CHROMOMETHYLASE 3</i> (<i>CMT3</i>), alongside the low expression of the demethylase gene REPRESSOR OF SILENCING 1 (<i>ROS1</i>) in <i>S. miltiorrhiza</i>. Additionally, four genes that are involved in tanshinone biosynthesis, including <i>1-DEOXY-<span>D</span>-XYLULOSE-5-PHOSPHATE REDUCTASE</i> (<i>DXS1</i>), <i>GERANYLGERANYL DIPHOSPHATE SYNTHASE</i> (<i>GGPPS2</i>), <i>4-HYDROXY-3-METHYLBUT-2-ENYL PYROPHOSPHATE REDUCTASE</i> (<i>HDR2</i>), and <i>COPALYL PYROPHOSPHATE SYNTHASE</i> (<i>CPS3</i>), showed lower methylation levels in the promoters of <i>DXS1</i>, <i>GGPPS2</i>, and <i>CPS3</i> and a higher DNA methylation level in the gene body of <i>HDR2</i> in <i>S. miltiorrhiza</i>, which may lead to their high expression and the accumulation of tanshinones. Consistently, overexpression of the <i>SmCMT3</i> in <i>S. miltiorrhiza</i> significantly reduced the contents of cryptotanshinone, tanshinone I, and tanshinone IIA. Transcriptomic and methylome analyses confirmed that the expression levels of the tanshinone biosynthesis-related genes, including <i>SmMK</i>, <i>SmCPS1</i>, <i>SmDXS2,</i> and <i>SmAACT1</i>, were correlated with their promoter or gene body DNA methylation levels. Our findings reveal that DNA methylation critically regulates tanshinone biosynthesis in <i>S. miltiorrhiza</i> and <i>S. bowleyana</i>, offering valuable insights for breeding.</p>\\n </div>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\"123 6\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70494\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70494","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

DNA甲基化在调控植物基因表达和次生代谢中起着关键作用。丹参和丹参是传统的中药植物,其根富含丹参酮成分。然而,DNA甲基化对丹参酮产生的调控机制尚不清楚。本研究采用高效液相色谱分析方法对30 d生的丹参酮含量进行了分析,发现丹参酮含量显著高于丹参酮含量。全基因组亚硫酸氢盐测序显示,丹参DNA甲基化水平升高,可能是由于甲基化相关基因的上调,包括结构域重排甲基转移酶1 (DRM1)、DNA甲基化1 (DDM1)、染色体甲基化酶2 (CMT1)和染色体甲基化酶3 (CMT3),以及去甲基化酶基因沉默抑制因子1 (ROS1)的低表达。此外,丹参酮生物合成过程中涉及的4个基因,1-脱氧- d -木糖糖-5-磷酸还原酶(DXS1)、香叶二磷酸合成酶(GGPPS2)、4-羟基-3-甲基-2-烯基焦磷酸还原酶(HDR2)和COPALYL焦磷酸合成酶(CPS3),在丹参酮中DXS1、GGPPS2和CPS3的启动子中甲基化水平较低,而在HDR2基因体中DNA甲基化水平较高。这可能导致它们的高表达和丹参酮的积累。同样,SmCMT3在丹参中的过表达显著降低了隐丹参酮、丹参酮I和丹参酮IIA的含量。转录组学和甲基组学分析证实,丹参酮生物合成相关基因(包括SmMK、SmCPS1、SmDXS2和SmAACT1)的表达水平与其启动子或基因体DNA甲基化水平相关。我们的研究结果揭示了DNA甲基化对丹参酮生物合成的关键调控,为丹参酮的育种提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

DNA methylation controls the expression of tanshinone synthesis genes and the tanshinone accumulation in Salvia miltiorrhiza and Salvia bowleyana

DNA methylation controls the expression of tanshinone synthesis genes and the tanshinone accumulation in Salvia miltiorrhiza and Salvia bowleyana

DNA methylation plays pivotal roles in regulating gene expression and the secondary metabolism in plants. Salvia miltiorrhiza and Salvia bowleyana are traditional Chinese medicinal plants with roots enriched with tanshinone components. However, the regulatory mechanism of DNA methylation on tanshinone production remains elusive. Here, we analyzed 30-day-old hairy roots of S. miltiorrhiza and S. bowleyana using targeted high-performance liquid chromatography analysis and found significantly higher tanshinone content in S. miltiorrhiza. Whole-genome bisulfite sequencing revealed elevated DNA methylation levels in S. miltiorrhiza, potentially due to the upregulation of methylation-related genes, including DOMAINS REARRANGED METHYLTRANSFERASE 1 (DRM1), DECREASE IN DNA METHYLATION 1 (DDM1), CHROMOMETHYLASE 2 (CMT1), and CHROMOMETHYLASE 3 (CMT3), alongside the low expression of the demethylase gene REPRESSOR OF SILENCING 1 (ROS1) in S. miltiorrhiza. Additionally, four genes that are involved in tanshinone biosynthesis, including 1-DEOXY-D-XYLULOSE-5-PHOSPHATE REDUCTASE (DXS1), GERANYLGERANYL DIPHOSPHATE SYNTHASE (GGPPS2), 4-HYDROXY-3-METHYLBUT-2-ENYL PYROPHOSPHATE REDUCTASE (HDR2), and COPALYL PYROPHOSPHATE SYNTHASE (CPS3), showed lower methylation levels in the promoters of DXS1, GGPPS2, and CPS3 and a higher DNA methylation level in the gene body of HDR2 in S. miltiorrhiza, which may lead to their high expression and the accumulation of tanshinones. Consistently, overexpression of the SmCMT3 in S. miltiorrhiza significantly reduced the contents of cryptotanshinone, tanshinone I, and tanshinone IIA. Transcriptomic and methylome analyses confirmed that the expression levels of the tanshinone biosynthesis-related genes, including SmMK, SmCPS1, SmDXS2, and SmAACT1, were correlated with their promoter or gene body DNA methylation levels. Our findings reveal that DNA methylation critically regulates tanshinone biosynthesis in S. miltiorrhiza and S. bowleyana, offering valuable insights for breeding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信