{"title":"布洛芬、硫酸软骨素和矿物质维生素片治疗大骨节病的转录组学和代谢机制(21)","authors":"Jinfeng Wen, Xingxing Deng, Zhengjun Yang, Hui Niu, Qian Zhang, Yijun Zhao, Gaowa Naren, Huan Liu, Feng Zhang, Xiaodong Yang, Cuiyan Wu","doi":"10.1002/rcm.10130","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Kashin–Beck disease (KBD) is an osteoarthropathy with no specific drug treatment. This study seeks to uncover the molecular mechanisms of ibuprofen, chondroitin sulfate, and vitamins with minerals tablets (21) in treating KBD.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Integrated transcriptomic and metabolomic analyses were performed on peripheral blood samples collected from four KBD patients before and 1 month after treatment. Differential gene expression was assessed using the DESeq package, while differential metabolites were identified through univariate and multivariate statistical analyses.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>After treatment, 5671 differential genes (|log<sub>2</sub>FC| ≥ 1, q < 0.05) were identified, with 4954 upregulated and 717 downregulated. Enriched pathways included PI3K-Akt, MAPK, ECM-receptor interaction, Rap1, and Ras signaling. Untargeted metabolomics analyses revealed five differentially expressed metabolites (VIP ≥ 1, |log<sub>2</sub>FC| > 0.58, <i>p</i> < 0.05): L-glutamine, 2-methylpropan-2-amine, epsilon-caprolactam, phosphocholine, and 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine. Metabolite enrichment analysis suggested alterations in amino acid and fatty acid metabolism. Integrated analysis revealed key pathways such as alanine, aspartate, and glutamate metabolism and arginine biosynthesis.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The combination of ibuprofen, chondroitin sulfate, and vitamins with minerals tablets (21) may alleviate KBD through modulation of key genes (GDNF, BDNF, CCL2, VEGFA, and PPARG) and glutamine-related metabolic pathways.</p>\n </section>\n </div>","PeriodicalId":225,"journal":{"name":"Rapid Communications in Mass Spectrometry","volume":"39 24","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptomic and Metabolomic Mechanism of Ibuprofen, Chondroitin Sulfate, and Vitamins With Minerals Tablets (21) for Kashin–Beck Disease Treatment\",\"authors\":\"Jinfeng Wen, Xingxing Deng, Zhengjun Yang, Hui Niu, Qian Zhang, Yijun Zhao, Gaowa Naren, Huan Liu, Feng Zhang, Xiaodong Yang, Cuiyan Wu\",\"doi\":\"10.1002/rcm.10130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Kashin–Beck disease (KBD) is an osteoarthropathy with no specific drug treatment. This study seeks to uncover the molecular mechanisms of ibuprofen, chondroitin sulfate, and vitamins with minerals tablets (21) in treating KBD.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Integrated transcriptomic and metabolomic analyses were performed on peripheral blood samples collected from four KBD patients before and 1 month after treatment. Differential gene expression was assessed using the DESeq package, while differential metabolites were identified through univariate and multivariate statistical analyses.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>After treatment, 5671 differential genes (|log<sub>2</sub>FC| ≥ 1, q < 0.05) were identified, with 4954 upregulated and 717 downregulated. Enriched pathways included PI3K-Akt, MAPK, ECM-receptor interaction, Rap1, and Ras signaling. Untargeted metabolomics analyses revealed five differentially expressed metabolites (VIP ≥ 1, |log<sub>2</sub>FC| > 0.58, <i>p</i> < 0.05): L-glutamine, 2-methylpropan-2-amine, epsilon-caprolactam, phosphocholine, and 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine. Metabolite enrichment analysis suggested alterations in amino acid and fatty acid metabolism. Integrated analysis revealed key pathways such as alanine, aspartate, and glutamate metabolism and arginine biosynthesis.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>The combination of ibuprofen, chondroitin sulfate, and vitamins with minerals tablets (21) may alleviate KBD through modulation of key genes (GDNF, BDNF, CCL2, VEGFA, and PPARG) and glutamine-related metabolic pathways.</p>\\n </section>\\n </div>\",\"PeriodicalId\":225,\"journal\":{\"name\":\"Rapid Communications in Mass Spectrometry\",\"volume\":\"39 24\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rapid Communications in Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/rcm.10130\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Communications in Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/rcm.10130","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Transcriptomic and Metabolomic Mechanism of Ibuprofen, Chondroitin Sulfate, and Vitamins With Minerals Tablets (21) for Kashin–Beck Disease Treatment
Background
Kashin–Beck disease (KBD) is an osteoarthropathy with no specific drug treatment. This study seeks to uncover the molecular mechanisms of ibuprofen, chondroitin sulfate, and vitamins with minerals tablets (21) in treating KBD.
Methods
Integrated transcriptomic and metabolomic analyses were performed on peripheral blood samples collected from four KBD patients before and 1 month after treatment. Differential gene expression was assessed using the DESeq package, while differential metabolites were identified through univariate and multivariate statistical analyses.
Results
After treatment, 5671 differential genes (|log2FC| ≥ 1, q < 0.05) were identified, with 4954 upregulated and 717 downregulated. Enriched pathways included PI3K-Akt, MAPK, ECM-receptor interaction, Rap1, and Ras signaling. Untargeted metabolomics analyses revealed five differentially expressed metabolites (VIP ≥ 1, |log2FC| > 0.58, p < 0.05): L-glutamine, 2-methylpropan-2-amine, epsilon-caprolactam, phosphocholine, and 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine. Metabolite enrichment analysis suggested alterations in amino acid and fatty acid metabolism. Integrated analysis revealed key pathways such as alanine, aspartate, and glutamate metabolism and arginine biosynthesis.
Conclusions
The combination of ibuprofen, chondroitin sulfate, and vitamins with minerals tablets (21) may alleviate KBD through modulation of key genes (GDNF, BDNF, CCL2, VEGFA, and PPARG) and glutamine-related metabolic pathways.
期刊介绍:
Rapid Communications in Mass Spectrometry is a journal whose aim is the rapid publication of original research results and ideas on all aspects of the science of gas-phase ions; it covers all the associated scientific disciplines. There is no formal limit on paper length ("rapid" is not synonymous with "brief"), but papers should be of a length that is commensurate with the importance and complexity of the results being reported. Contributions may be theoretical or practical in nature; they may deal with methods, techniques and applications, or with the interpretation of results; they may cover any area in science that depends directly on measurements made upon gaseous ions or that is associated with such measurements.