单倍型解析的lasiocarpa杨端粒到端粒基因组组装揭示了反转录转座子驱动着丝粒进化。

IF 5.7 1区 生物学 Q1 PLANT SCIENCES
Tengfei Shen, Yihang Ning, Yaolin Wang, Zihe Song, Mengli Xi, Huixin Pan, Meng Xu
{"title":"单倍型解析的lasiocarpa杨端粒到端粒基因组组装揭示了反转录转座子驱动着丝粒进化。","authors":"Tengfei Shen,&nbsp;Yihang Ning,&nbsp;Yaolin Wang,&nbsp;Zihe Song,&nbsp;Mengli Xi,&nbsp;Huixin Pan,&nbsp;Meng Xu","doi":"10.1111/tpj.70504","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Centromeres, essential for chromosome segregation, exhibit remarkable evolutionary dynamism in sequence composition and structural organization. Here, we report the first haplotype-resolved, telomere-to-telomere genome assembly of <i>Populus lasiocarpa</i> (PLAS) and precisely map all 38 functional centromeres through CENH3 ChIP-Seq. Unlike classical satellite-rich centromeres in model plants, PLAS centromeres lack abundant satellite arrays but are dominated by retrotransposons, particularly RLG and RIL elements, which form intricate nested TE arrays within the functional centromeric regions, disrupting their structural integrity and driving their evolution. Comparative analysis with <i>P. trichocarpa</i> reveals a conserved retrotransposon-dominated architecture, despite minimal sequence conservation. We propose a cyclic model of centromere evolution in which autonomous retrotransposons destabilize functional centromeres through epigenetic erosion, triggering neocentromere formation at pericentromeric sites enriched in transposable elements (TEs) and tandem repeats (TRs). These neocentromeres either succumb to recurrent retrotransposon invasions or stabilize through KARMA-mediated TR expansion, ultimately giving rise to satellite-rich centromeres. Our work redefines centromeres as dynamic, epigenetically plastic domains shaped by retrotransposon-TR antagonism, challenging the satellite-centric paradigm and offering novel insights into plant genome evolution.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"123 6","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Haplotype-resolved telomere-to-telomere genome assembly of Populus lasiocarpa unveils retrotransposon-driven centromere evolution\",\"authors\":\"Tengfei Shen,&nbsp;Yihang Ning,&nbsp;Yaolin Wang,&nbsp;Zihe Song,&nbsp;Mengli Xi,&nbsp;Huixin Pan,&nbsp;Meng Xu\",\"doi\":\"10.1111/tpj.70504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Centromeres, essential for chromosome segregation, exhibit remarkable evolutionary dynamism in sequence composition and structural organization. Here, we report the first haplotype-resolved, telomere-to-telomere genome assembly of <i>Populus lasiocarpa</i> (PLAS) and precisely map all 38 functional centromeres through CENH3 ChIP-Seq. Unlike classical satellite-rich centromeres in model plants, PLAS centromeres lack abundant satellite arrays but are dominated by retrotransposons, particularly RLG and RIL elements, which form intricate nested TE arrays within the functional centromeric regions, disrupting their structural integrity and driving their evolution. Comparative analysis with <i>P. trichocarpa</i> reveals a conserved retrotransposon-dominated architecture, despite minimal sequence conservation. We propose a cyclic model of centromere evolution in which autonomous retrotransposons destabilize functional centromeres through epigenetic erosion, triggering neocentromere formation at pericentromeric sites enriched in transposable elements (TEs) and tandem repeats (TRs). These neocentromeres either succumb to recurrent retrotransposon invasions or stabilize through KARMA-mediated TR expansion, ultimately giving rise to satellite-rich centromeres. Our work redefines centromeres as dynamic, epigenetically plastic domains shaped by retrotransposon-TR antagonism, challenging the satellite-centric paradigm and offering novel insights into plant genome evolution.</p>\\n </div>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\"123 6\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70504\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70504","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

着丝粒是染色体分离的关键,在序列组成和结构组织方面表现出显著的进化动力。在这里,我们报道了第一个单倍型解决,端粒到端粒基因组组装的杨lasiocarpa (PLAS),并通过CENH3 ChIP-Seq精确绘制所有38个功能着丝粒。与模式植物中经典的富含卫星的着丝粒不同,PLAS着丝粒缺乏丰富的卫星阵列,但由反转录转座子主导,特别是RLG和RIL元件,它们在功能着丝粒区域内形成复杂的嵌套TE阵列,破坏了它们的结构完整性并推动了它们的进化。与P. trichocarpa的比较分析揭示了保守的逆转录转座子主导的结构,尽管最小的序列保守。我们提出了一个着丝粒进化的循环模型,其中自主的反转录转座子通过表观遗传侵蚀使功能着丝粒不稳定,在富含转座元件(TEs)和串联重复序列(TRs)的中心点附近触发新着丝粒的形成。这些新的着丝粒要么屈服于反复的反转录转座子入侵,要么通过业力介导的TR扩张稳定下来,最终产生富含卫星的着丝粒。我们的工作将着丝粒重新定义为由反转录转座子- tr拮抗作用形成的动态表观遗传可塑性结构域,挑战了以卫星为中心的范式,并为植物基因组进化提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Haplotype-resolved telomere-to-telomere genome assembly of Populus lasiocarpa unveils retrotransposon-driven centromere evolution

Haplotype-resolved telomere-to-telomere genome assembly of Populus lasiocarpa unveils retrotransposon-driven centromere evolution

Centromeres, essential for chromosome segregation, exhibit remarkable evolutionary dynamism in sequence composition and structural organization. Here, we report the first haplotype-resolved, telomere-to-telomere genome assembly of Populus lasiocarpa (PLAS) and precisely map all 38 functional centromeres through CENH3 ChIP-Seq. Unlike classical satellite-rich centromeres in model plants, PLAS centromeres lack abundant satellite arrays but are dominated by retrotransposons, particularly RLG and RIL elements, which form intricate nested TE arrays within the functional centromeric regions, disrupting their structural integrity and driving their evolution. Comparative analysis with P. trichocarpa reveals a conserved retrotransposon-dominated architecture, despite minimal sequence conservation. We propose a cyclic model of centromere evolution in which autonomous retrotransposons destabilize functional centromeres through epigenetic erosion, triggering neocentromere formation at pericentromeric sites enriched in transposable elements (TEs) and tandem repeats (TRs). These neocentromeres either succumb to recurrent retrotransposon invasions or stabilize through KARMA-mediated TR expansion, ultimately giving rise to satellite-rich centromeres. Our work redefines centromeres as dynamic, epigenetically plastic domains shaped by retrotransposon-TR antagonism, challenging the satellite-centric paradigm and offering novel insights into plant genome evolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信