Xueting Wei, Jiajia Luo, Xianghua Zhong, Xuebing Tao, Xinyang Liu, Xi Peng, Kunyu Zhang, Peng Shi
{"title":"利用模拟ecm的超分子水凝胶对间充质间质细胞进行单细胞包封,可提高治疗效果。","authors":"Xueting Wei, Jiajia Luo, Xianghua Zhong, Xuebing Tao, Xinyang Liu, Xi Peng, Kunyu Zhang, Peng Shi","doi":"10.1039/d5bm01013f","DOIUrl":null,"url":null,"abstract":"<p><p>Mesenchymal stromal cells (MSCs) hold great promise for tissue regeneration due to their potent paracrine effects. However, the absence of extracellular matrix (ECM) support following transplantation significantly compromises their survival and therapeutic efficacy. To address this, we developed a single-cell encapsulation strategy using an ECM-mimetic supramolecular hydrogel system based on host-guest chemistry. In this approach, cholesterol-polyethylene glycol-adamantane is inserted into the MSC membrane <i>via</i> hydrophobic interactions, enabling the subsequent formation of a uniform hydrogel coating through specific recognition between cyclodextrin- and adamantane-modified hyaluronic acids. This facile and biocompatible strategy achieves high encapsulation efficiency without the need for complex equipment, while preserving cell viability and function. Encapsulated MSCs exhibited enhanced resistance to pathological stress, improved survival, and superior therapeutic efficacy in a rat model of myocardial infarction. These findings highlight the potential of supramolecular single-cell encapsulation to augment MSC-based therapies for tissue repair and regenerative medicine.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell encapsulation of mesenchymal stromal cells <i>via</i> ECM-mimetic supramolecular hydrogels enhances therapeutic efficacy.\",\"authors\":\"Xueting Wei, Jiajia Luo, Xianghua Zhong, Xuebing Tao, Xinyang Liu, Xi Peng, Kunyu Zhang, Peng Shi\",\"doi\":\"10.1039/d5bm01013f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mesenchymal stromal cells (MSCs) hold great promise for tissue regeneration due to their potent paracrine effects. However, the absence of extracellular matrix (ECM) support following transplantation significantly compromises their survival and therapeutic efficacy. To address this, we developed a single-cell encapsulation strategy using an ECM-mimetic supramolecular hydrogel system based on host-guest chemistry. In this approach, cholesterol-polyethylene glycol-adamantane is inserted into the MSC membrane <i>via</i> hydrophobic interactions, enabling the subsequent formation of a uniform hydrogel coating through specific recognition between cyclodextrin- and adamantane-modified hyaluronic acids. This facile and biocompatible strategy achieves high encapsulation efficiency without the need for complex equipment, while preserving cell viability and function. Encapsulated MSCs exhibited enhanced resistance to pathological stress, improved survival, and superior therapeutic efficacy in a rat model of myocardial infarction. These findings highlight the potential of supramolecular single-cell encapsulation to augment MSC-based therapies for tissue repair and regenerative medicine.</p>\",\"PeriodicalId\":65,\"journal\":{\"name\":\"Biomaterials Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d5bm01013f\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5bm01013f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Single-cell encapsulation of mesenchymal stromal cells via ECM-mimetic supramolecular hydrogels enhances therapeutic efficacy.
Mesenchymal stromal cells (MSCs) hold great promise for tissue regeneration due to their potent paracrine effects. However, the absence of extracellular matrix (ECM) support following transplantation significantly compromises their survival and therapeutic efficacy. To address this, we developed a single-cell encapsulation strategy using an ECM-mimetic supramolecular hydrogel system based on host-guest chemistry. In this approach, cholesterol-polyethylene glycol-adamantane is inserted into the MSC membrane via hydrophobic interactions, enabling the subsequent formation of a uniform hydrogel coating through specific recognition between cyclodextrin- and adamantane-modified hyaluronic acids. This facile and biocompatible strategy achieves high encapsulation efficiency without the need for complex equipment, while preserving cell viability and function. Encapsulated MSCs exhibited enhanced resistance to pathological stress, improved survival, and superior therapeutic efficacy in a rat model of myocardial infarction. These findings highlight the potential of supramolecular single-cell encapsulation to augment MSC-based therapies for tissue repair and regenerative medicine.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.