具有生物机电兼容和脑微运动检测的超柔性神经电极。

IF 9.6 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Donglei Chen, Yu Lu, Shuo Zhang, Wenqi Zhang, Zejie Yu, Shuideng Wang, Zhi Qu, Mingxing Cheng, Yiqing Yao, Deheng Wang, Zhan Yang, Lixin Dong
{"title":"具有生物机电兼容和脑微运动检测的超柔性神经电极。","authors":"Donglei Chen, Yu Lu, Shuo Zhang, Wenqi Zhang, Zejie Yu, Shuideng Wang, Zhi Qu, Mingxing Cheng, Yiqing Yao, Deheng Wang, Zhan Yang, Lixin Dong","doi":"10.1002/adhm.202503101","DOIUrl":null,"url":null,"abstract":"<p><p>Neural electrodes, as core components of brain-computer interfaces(BCIs), face critical challenges in achieving stable mechanical coupling with brain tissue to ensure high-quality signal acquisition. Current flexible electrodes, including semi-invasive meningeal-attached types and implantable cantilever designs, exhibit significant mechanical mismatches (elastic modulus 5-6 orders higher than brain tissue) due to material/structural limitations, leading to interfacial slippage. While thread-like implants (e.g., Neuralink's electrodes) improve compliance via elongated structures, quantitative characterization of mechano-bioelectric interactions remains unexplored. This study proposes a bioelectromechanical coupling strategy, emphasizing synchronized motion between the electrode and the brain tissue through exposed-end deformation. A 4-channel ultra-flexible electrode (40 mm in length, 164 µm in width, and 3 µm in thickness) is optimized using finite-element simulations and zero relative-motion criteria, achieving an equivalent stiffness of 0.023 N m<sup>-1</sup>-matching brain tissue micromotion stiffness. A nanorobotic manipulator installed inside a scanning electron microscope(SEM) with an atomic force microscope(AFM) cantilever enabled precision characterization under the simulated displacement of 25 µm, revealing interfacial forces of 575 nN and piezoresistive sensitivities of 6.4 pA mm<sup>-1</sup> (length) and 10.2 pA µm<sup>-1</sup> (displacement). The dual-functionality (signal acquisition and micromotion sensing) electrodes demonstrate breakthrough potential, establishing quantitative design standards for next-generation bioelectronic implants.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e03101"},"PeriodicalIF":9.6000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Ultra-Flexible Neural Electrode with Bioelectromechanical Compatibility and Brain Micromotion Detection.\",\"authors\":\"Donglei Chen, Yu Lu, Shuo Zhang, Wenqi Zhang, Zejie Yu, Shuideng Wang, Zhi Qu, Mingxing Cheng, Yiqing Yao, Deheng Wang, Zhan Yang, Lixin Dong\",\"doi\":\"10.1002/adhm.202503101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural electrodes, as core components of brain-computer interfaces(BCIs), face critical challenges in achieving stable mechanical coupling with brain tissue to ensure high-quality signal acquisition. Current flexible electrodes, including semi-invasive meningeal-attached types and implantable cantilever designs, exhibit significant mechanical mismatches (elastic modulus 5-6 orders higher than brain tissue) due to material/structural limitations, leading to interfacial slippage. While thread-like implants (e.g., Neuralink's electrodes) improve compliance via elongated structures, quantitative characterization of mechano-bioelectric interactions remains unexplored. This study proposes a bioelectromechanical coupling strategy, emphasizing synchronized motion between the electrode and the brain tissue through exposed-end deformation. A 4-channel ultra-flexible electrode (40 mm in length, 164 µm in width, and 3 µm in thickness) is optimized using finite-element simulations and zero relative-motion criteria, achieving an equivalent stiffness of 0.023 N m<sup>-1</sup>-matching brain tissue micromotion stiffness. A nanorobotic manipulator installed inside a scanning electron microscope(SEM) with an atomic force microscope(AFM) cantilever enabled precision characterization under the simulated displacement of 25 µm, revealing interfacial forces of 575 nN and piezoresistive sensitivities of 6.4 pA mm<sup>-1</sup> (length) and 10.2 pA µm<sup>-1</sup> (displacement). The dual-functionality (signal acquisition and micromotion sensing) electrodes demonstrate breakthrough potential, establishing quantitative design standards for next-generation bioelectronic implants.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e03101\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202503101\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202503101","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

神经电极作为脑机接口(bci)的核心部件,如何与脑组织实现稳定的机械耦合以保证高质量的信号采集面临着严峻的挑战。目前的柔性电极,包括半侵入式脑膜附着型和可植入悬臂设计,由于材料/结构限制,表现出明显的机械不匹配(弹性模量比脑组织高5-6个数量级),导致界面滑移。虽然线状植入物(例如Neuralink的电极)通过拉长的结构提高了顺应性,但机械-生物电相互作用的定量表征仍未得到探索。本研究提出了一种生物机电耦合策略,强调电极与脑组织之间通过暴露端变形的同步运动。采用有限元模拟和零相对运动标准对4通道超柔性电极(长40 mm,宽164 μ m,厚3 μ m)进行了优化,实现了0.023 N m-1的等效刚度,与脑组织微运动刚度相匹配。在扫描电子显微镜(SEM)和原子力显微镜(AFM)悬臂内安装纳米机械臂,在25 μ m的模拟位移下进行精确表征,显示界面力为575 nN,压阻灵敏度为6.4 pA mm-1(长度)和10.2 pA mm-1(位移)。双功能(信号采集和微运动传感)电极展示了突破性的潜力,为下一代生物电子植入物建立了定量设计标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Ultra-Flexible Neural Electrode with Bioelectromechanical Compatibility and Brain Micromotion Detection.

Neural electrodes, as core components of brain-computer interfaces(BCIs), face critical challenges in achieving stable mechanical coupling with brain tissue to ensure high-quality signal acquisition. Current flexible electrodes, including semi-invasive meningeal-attached types and implantable cantilever designs, exhibit significant mechanical mismatches (elastic modulus 5-6 orders higher than brain tissue) due to material/structural limitations, leading to interfacial slippage. While thread-like implants (e.g., Neuralink's electrodes) improve compliance via elongated structures, quantitative characterization of mechano-bioelectric interactions remains unexplored. This study proposes a bioelectromechanical coupling strategy, emphasizing synchronized motion between the electrode and the brain tissue through exposed-end deformation. A 4-channel ultra-flexible electrode (40 mm in length, 164 µm in width, and 3 µm in thickness) is optimized using finite-element simulations and zero relative-motion criteria, achieving an equivalent stiffness of 0.023 N m-1-matching brain tissue micromotion stiffness. A nanorobotic manipulator installed inside a scanning electron microscope(SEM) with an atomic force microscope(AFM) cantilever enabled precision characterization under the simulated displacement of 25 µm, revealing interfacial forces of 575 nN and piezoresistive sensitivities of 6.4 pA mm-1 (length) and 10.2 pA µm-1 (displacement). The dual-functionality (signal acquisition and micromotion sensing) electrodes demonstrate breakthrough potential, establishing quantitative design standards for next-generation bioelectronic implants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信