揭示CsPbBr3/M2O5 (M = Nb, Ta)异质结界面性质的原子尺度起源:结合第一性原理和实验方法。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Menglong Gao, Yao Guo, Shiding Zhang, Yinghui Xue, Jianxin Li, Shuaishuai Hu, Haixiang Song, Kaidi Wu, Miaomiao Li, Huihui Zhao, Zhongyuan Zhou, Qing Shen
{"title":"揭示CsPbBr3/M2O5 (M = Nb, Ta)异质结界面性质的原子尺度起源:结合第一性原理和实验方法。","authors":"Menglong Gao, Yao Guo, Shiding Zhang, Yinghui Xue, Jianxin Li, Shuaishuai Hu, Haixiang Song, Kaidi Wu, Miaomiao Li, Huihui Zhao, Zhongyuan Zhou, Qing Shen","doi":"10.1039/d5mh01004g","DOIUrl":null,"url":null,"abstract":"<p><p>We study the interface properties of CsPbBr<sub>3</sub>/Nb<sub>2</sub>O<sub>5</sub> and CsPbBr<sub>3</sub>/Ta<sub>2</sub>O<sub>5</sub> heterojunctions for structural, electronic, and optical characteristics. First-principles calculations were performed to analyze interfacial binding energy, electronic local function (ELF), charge density difference, and electrostatic potential. Four interface configurations were constructed based on CsPbBr<sub>3</sub> (100) and M<sub>2</sub>O<sub>5</sub> (001) terminations, revealing that the PbBr/TaO interface exhibits the highest binding energy (0.0073 eV Å<sup>-2</sup>), indicating superior stability. Charge transfer calculations demonstrate electron migration from CsPbBr<sub>3</sub> to M<sub>2</sub>O<sub>5</sub>, forming an internal electric field that promotes charge separation. ELF and charge density difference maps highlight strong covalent interactions at the interfaces, particularly in the PbBr/TaO interface. Experimental characterization <i>via</i> XRD, SEM, TEM and XPS confirms successful heterojunction formation with preserved crystallinity. These findings provide theoretical and experimental insights into optimizing M<sub>2</sub>O<sub>5</sub>-based electron transport layers to enhance PSC efficiency and stability.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling atomic-scale origins of interfacial properties in CsPbBr<sub>3</sub>/M<sub>2</sub>O<sub>5</sub> (M = Nb, Ta) heterojunctions: a combined first-principles and experimental approach.\",\"authors\":\"Menglong Gao, Yao Guo, Shiding Zhang, Yinghui Xue, Jianxin Li, Shuaishuai Hu, Haixiang Song, Kaidi Wu, Miaomiao Li, Huihui Zhao, Zhongyuan Zhou, Qing Shen\",\"doi\":\"10.1039/d5mh01004g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study the interface properties of CsPbBr<sub>3</sub>/Nb<sub>2</sub>O<sub>5</sub> and CsPbBr<sub>3</sub>/Ta<sub>2</sub>O<sub>5</sub> heterojunctions for structural, electronic, and optical characteristics. First-principles calculations were performed to analyze interfacial binding energy, electronic local function (ELF), charge density difference, and electrostatic potential. Four interface configurations were constructed based on CsPbBr<sub>3</sub> (100) and M<sub>2</sub>O<sub>5</sub> (001) terminations, revealing that the PbBr/TaO interface exhibits the highest binding energy (0.0073 eV Å<sup>-2</sup>), indicating superior stability. Charge transfer calculations demonstrate electron migration from CsPbBr<sub>3</sub> to M<sub>2</sub>O<sub>5</sub>, forming an internal electric field that promotes charge separation. ELF and charge density difference maps highlight strong covalent interactions at the interfaces, particularly in the PbBr/TaO interface. Experimental characterization <i>via</i> XRD, SEM, TEM and XPS confirms successful heterojunction formation with preserved crystallinity. These findings provide theoretical and experimental insights into optimizing M<sub>2</sub>O<sub>5</sub>-based electron transport layers to enhance PSC efficiency and stability.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5mh01004g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh01004g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了CsPbBr3/Nb2O5和CsPbBr3/Ta2O5异质结的界面结构、电子和光学特性。利用第一性原理计算分析了界面结合能、电子局域函数(ELF)、电荷密度差和静电势。基于CsPbBr3(100)和M2O5(001)构建了4种界面构型,结果表明PbBr/TaO界面结合能最高(0.0073 eV Å-2),具有较好的稳定性。电荷转移计算表明,电子从CsPbBr3向M2O5迁移,形成一个促进电荷分离的内部电场。ELF和电荷密度差图突出了界面上的强共价相互作用,特别是在PbBr/TaO界面上。通过XRD, SEM, TEM和XPS的实验表征证实了异质结的成功形成并保留了结晶度。这些发现为优化基于m2o5的电子传输层以提高PSC的效率和稳定性提供了理论和实验见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling atomic-scale origins of interfacial properties in CsPbBr3/M2O5 (M = Nb, Ta) heterojunctions: a combined first-principles and experimental approach.

We study the interface properties of CsPbBr3/Nb2O5 and CsPbBr3/Ta2O5 heterojunctions for structural, electronic, and optical characteristics. First-principles calculations were performed to analyze interfacial binding energy, electronic local function (ELF), charge density difference, and electrostatic potential. Four interface configurations were constructed based on CsPbBr3 (100) and M2O5 (001) terminations, revealing that the PbBr/TaO interface exhibits the highest binding energy (0.0073 eV Å-2), indicating superior stability. Charge transfer calculations demonstrate electron migration from CsPbBr3 to M2O5, forming an internal electric field that promotes charge separation. ELF and charge density difference maps highlight strong covalent interactions at the interfaces, particularly in the PbBr/TaO interface. Experimental characterization via XRD, SEM, TEM and XPS confirms successful heterojunction formation with preserved crystallinity. These findings provide theoretical and experimental insights into optimizing M2O5-based electron transport layers to enhance PSC efficiency and stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信