两亲性环糊精基纳米载体在微流体环境中磁性递送形态素

IF 4.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Alessandro Surpi, Roberto Zagami, Marianna Barbalinardo, Nina Burduja, Giuseppe Nocito, Riccardo Di Corato, Maria Pia Casaletto, Francesco Valle, Angelo Nicosia, Placido Giuseppe Mineo, Valentin Alek Dediu and Antonino Mazzaglia
{"title":"两亲性环糊精基纳米载体在微流体环境中磁性递送形态素","authors":"Alessandro Surpi, Roberto Zagami, Marianna Barbalinardo, Nina Burduja, Giuseppe Nocito, Riccardo Di Corato, Maria Pia Casaletto, Francesco Valle, Angelo Nicosia, Placido Giuseppe Mineo, Valentin Alek Dediu and Antonino Mazzaglia","doi":"10.1039/D5MA00374A","DOIUrl":null,"url":null,"abstract":"<p >Reliable methodologies for spatio-temporal controlled delivery of morphogens are of key importance in organoid research, regenerative medicine and developmental biology. To develop such a methodology, we constructed a magnetic nanocarrier composed of a supramolecular nanoassembly of amphiphilic cyclodextrin (SC6OH) entangling superparamagnetic iron oxide nanoparticles (SPIONs) within the surface. Upon encapsulation of a defined amount of retinoic acid (RA), the nanocarriers are remotely guided through microfluidic channels to a cell culture compartment by a specifically designed magnetic device based on electro-mechanically actuated permanent magnets. We demonstrate the efficiency of this innovative technology for the delivery of morphogens by applying it to induce the differentiation of human neuroblastoma SH-SY5Y cells into neurons. The magnetically controlled RA delivery resulted in the successful induction of neuronal differentiation with precise spatial and temporal control while minimizing reliance on complex microfluidic setups. Thus, the integration of magnetic actuation with supramolecular nanocarriers promotes new efficient routes and scalable protocols that go beyond state-of-the-art research in various bio-medical applications.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 19","pages":" 6775-6786"},"PeriodicalIF":4.7000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00374a?page=search","citationCount":"0","resultStr":"{\"title\":\"Amphiphilic cyclodextrin-based nanocarriers for magnetic delivery of a morphogen in microfluidic environments\",\"authors\":\"Alessandro Surpi, Roberto Zagami, Marianna Barbalinardo, Nina Burduja, Giuseppe Nocito, Riccardo Di Corato, Maria Pia Casaletto, Francesco Valle, Angelo Nicosia, Placido Giuseppe Mineo, Valentin Alek Dediu and Antonino Mazzaglia\",\"doi\":\"10.1039/D5MA00374A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Reliable methodologies for spatio-temporal controlled delivery of morphogens are of key importance in organoid research, regenerative medicine and developmental biology. To develop such a methodology, we constructed a magnetic nanocarrier composed of a supramolecular nanoassembly of amphiphilic cyclodextrin (SC6OH) entangling superparamagnetic iron oxide nanoparticles (SPIONs) within the surface. Upon encapsulation of a defined amount of retinoic acid (RA), the nanocarriers are remotely guided through microfluidic channels to a cell culture compartment by a specifically designed magnetic device based on electro-mechanically actuated permanent magnets. We demonstrate the efficiency of this innovative technology for the delivery of morphogens by applying it to induce the differentiation of human neuroblastoma SH-SY5Y cells into neurons. The magnetically controlled RA delivery resulted in the successful induction of neuronal differentiation with precise spatial and temporal control while minimizing reliance on complex microfluidic setups. Thus, the integration of magnetic actuation with supramolecular nanocarriers promotes new efficient routes and scalable protocols that go beyond state-of-the-art research in various bio-medical applications.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":\" 19\",\"pages\":\" 6775-6786\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00374a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00374a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00374a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在类器官研究、再生医学和发育生物学中,形成因子时空控制递送的可靠方法具有重要意义。为了开发这种方法,我们构建了一种磁性纳米载体,该载体由两亲性环糊精(SC6OH)的超分子纳米组件在表面缠绕超顺磁性氧化铁纳米粒子(SPIONs)组成。在包封一定量的维甲酸(RA)后,纳米载体通过微流体通道被一个基于机电驱动永磁体的专门设计的磁性装置远程引导到细胞培养室。我们通过将这种创新技术应用于诱导人神经母细胞瘤SH-SY5Y细胞向神经元的分化,证明了形态因子传递的效率。磁控RA传递导致神经元分化的成功诱导与精确的空间和时间控制,同时最大限度地减少对复杂的微流体设置的依赖。因此,磁驱动与超分子纳米载体的集成促进了新的高效路线和可扩展的协议,超越了各种生物医学应用的最新研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Amphiphilic cyclodextrin-based nanocarriers for magnetic delivery of a morphogen in microfluidic environments

Amphiphilic cyclodextrin-based nanocarriers for magnetic delivery of a morphogen in microfluidic environments

Reliable methodologies for spatio-temporal controlled delivery of morphogens are of key importance in organoid research, regenerative medicine and developmental biology. To develop such a methodology, we constructed a magnetic nanocarrier composed of a supramolecular nanoassembly of amphiphilic cyclodextrin (SC6OH) entangling superparamagnetic iron oxide nanoparticles (SPIONs) within the surface. Upon encapsulation of a defined amount of retinoic acid (RA), the nanocarriers are remotely guided through microfluidic channels to a cell culture compartment by a specifically designed magnetic device based on electro-mechanically actuated permanent magnets. We demonstrate the efficiency of this innovative technology for the delivery of morphogens by applying it to induce the differentiation of human neuroblastoma SH-SY5Y cells into neurons. The magnetically controlled RA delivery resulted in the successful induction of neuronal differentiation with precise spatial and temporal control while minimizing reliance on complex microfluidic setups. Thus, the integration of magnetic actuation with supramolecular nanocarriers promotes new efficient routes and scalable protocols that go beyond state-of-the-art research in various bio-medical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信