Zhen Xiong, Hairong Zhang, Can Wang, Haijun Guo, Mengkun Wang, Hailong Li, Xuefang Chen, Lian Xiong and Xinde Chen
{"title":"利用热解气从废三元锂离子电池中回收贵重金属","authors":"Zhen Xiong, Hairong Zhang, Can Wang, Haijun Guo, Mengkun Wang, Hailong Li, Xuefang Chen, Lian Xiong and Xinde Chen","doi":"10.1039/D5GC03423J","DOIUrl":null,"url":null,"abstract":"<p >To establish a recycling process for spent lithium-ion batteries (LIBs) suitable for industrialization, minimizing energy consumption and simplifying the recycling process are critical. Herein, we propose a roasting reduction method to recover valuable metals from spent LIBs by repurposing the pyrolysis gas of the LIBs. The pyrolysis gas serves as a reducing agent, while the carbon-based materials in the LIBs (graphite, electrolytes, separators, and binders) act as a carbon resource during the roasting process. The results show that the spent LiNi<small><sub>0.65</sub></small>Co<small><sub>0.15</sub></small>Mn<small><sub>0.2</sub></small>O<small><sub>2</sub></small> (LNCM) cell can be completely reduced to Li, Ni, Co, Mn, or their respective compounds using pyrolysis gas at 550 °C. Through a combined environmentally friendly process of water leaching and citric acid leaching, 91.62% of Li, 98.71% of Ni, 99.46% of Co, and 98.51% of Mn are recovered from the roasted products. These recovery efficiencies are higher than that of carbothermal reduction using carbon-based materials in an inert atmosphere. The synergistic effect between the reductive gases in the pyrolysis gas and the carbon resource is a key factor enabling the reduction process of LNCM at lower temperatures compared to conventional carbothermic reduction under an oxygen-free atmosphere. Therefore, the recycling method based on the <em>in situ</em> reduction-leaching of LIBs is environmentally friendly, economical, and has promising applications in industrial scale-up.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 38","pages":" 11971-11984"},"PeriodicalIF":9.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/gc/d5gc03423j?page=search","citationCount":"0","resultStr":"{\"title\":\"The recovery of valuable metals from spent ternary lithium-ion batteries by repurposing the pyrolysis gas\",\"authors\":\"Zhen Xiong, Hairong Zhang, Can Wang, Haijun Guo, Mengkun Wang, Hailong Li, Xuefang Chen, Lian Xiong and Xinde Chen\",\"doi\":\"10.1039/D5GC03423J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >To establish a recycling process for spent lithium-ion batteries (LIBs) suitable for industrialization, minimizing energy consumption and simplifying the recycling process are critical. Herein, we propose a roasting reduction method to recover valuable metals from spent LIBs by repurposing the pyrolysis gas of the LIBs. The pyrolysis gas serves as a reducing agent, while the carbon-based materials in the LIBs (graphite, electrolytes, separators, and binders) act as a carbon resource during the roasting process. The results show that the spent LiNi<small><sub>0.65</sub></small>Co<small><sub>0.15</sub></small>Mn<small><sub>0.2</sub></small>O<small><sub>2</sub></small> (LNCM) cell can be completely reduced to Li, Ni, Co, Mn, or their respective compounds using pyrolysis gas at 550 °C. Through a combined environmentally friendly process of water leaching and citric acid leaching, 91.62% of Li, 98.71% of Ni, 99.46% of Co, and 98.51% of Mn are recovered from the roasted products. These recovery efficiencies are higher than that of carbothermal reduction using carbon-based materials in an inert atmosphere. The synergistic effect between the reductive gases in the pyrolysis gas and the carbon resource is a key factor enabling the reduction process of LNCM at lower temperatures compared to conventional carbothermic reduction under an oxygen-free atmosphere. Therefore, the recycling method based on the <em>in situ</em> reduction-leaching of LIBs is environmentally friendly, economical, and has promising applications in industrial scale-up.</p>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\" 38\",\"pages\":\" 11971-11984\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/gc/d5gc03423j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d5gc03423j\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d5gc03423j","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The recovery of valuable metals from spent ternary lithium-ion batteries by repurposing the pyrolysis gas
To establish a recycling process for spent lithium-ion batteries (LIBs) suitable for industrialization, minimizing energy consumption and simplifying the recycling process are critical. Herein, we propose a roasting reduction method to recover valuable metals from spent LIBs by repurposing the pyrolysis gas of the LIBs. The pyrolysis gas serves as a reducing agent, while the carbon-based materials in the LIBs (graphite, electrolytes, separators, and binders) act as a carbon resource during the roasting process. The results show that the spent LiNi0.65Co0.15Mn0.2O2 (LNCM) cell can be completely reduced to Li, Ni, Co, Mn, or their respective compounds using pyrolysis gas at 550 °C. Through a combined environmentally friendly process of water leaching and citric acid leaching, 91.62% of Li, 98.71% of Ni, 99.46% of Co, and 98.51% of Mn are recovered from the roasted products. These recovery efficiencies are higher than that of carbothermal reduction using carbon-based materials in an inert atmosphere. The synergistic effect between the reductive gases in the pyrolysis gas and the carbon resource is a key factor enabling the reduction process of LNCM at lower temperatures compared to conventional carbothermic reduction under an oxygen-free atmosphere. Therefore, the recycling method based on the in situ reduction-leaching of LIBs is environmentally friendly, economical, and has promising applications in industrial scale-up.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.