Irina Bobkova , Andrea Lachmann , Ang Li , Alicia Lima , Vesna Stojanoska , Adela YiYu Zhang
{"title":"在p > 处限定K(p − 1)-本地奇异皮卡德群3","authors":"Irina Bobkova , Andrea Lachmann , Ang Li , Alicia Lima , Vesna Stojanoska , Adela YiYu Zhang","doi":"10.1016/j.topol.2025.109445","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we bound the descent filtration of the exotic Picard group <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, for a prime number <span><math><mi>p</mi><mo>></mo><mn>3</mn></math></span> and <span><math><mi>n</mi><mo>=</mo><mi>p</mi><mo>−</mo><mn>1</mn></math></span>. Our method involves a detailed comparison of the Picard spectral sequence, the homotopy fixed point spectral sequence, and an auxiliary <em>β</em>-inverted homotopy fixed point spectral sequence whose input is the Farrell-Tate cohomology of the Morava stabilizer group. Along the way, we deduce that the <span><math><mi>K</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>-local Adams-Novikov spectral sequence for the sphere has a horizontal vanishing line at <span><math><mn>3</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></math></span> on the <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn></mrow></msub></math></span>-page.</div><div>The same analysis also allows us to express the exotic Picard group of <span><math><mi>K</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>-local modules over the homotopy fixed points spectrum <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>h</mi><mi>N</mi></mrow></msubsup></math></span>, where <em>N</em> is the normalizer in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of a finite cyclic subgroup of order <em>p</em>, as a subquotient of a single continuous cohomology group <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>N</mi><mo>,</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><msub><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"376 ","pages":"Article 109445"},"PeriodicalIF":0.5000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounding the K(p − 1)-local exotic Picard group at p > 3\",\"authors\":\"Irina Bobkova , Andrea Lachmann , Ang Li , Alicia Lima , Vesna Stojanoska , Adela YiYu Zhang\",\"doi\":\"10.1016/j.topol.2025.109445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we bound the descent filtration of the exotic Picard group <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, for a prime number <span><math><mi>p</mi><mo>></mo><mn>3</mn></math></span> and <span><math><mi>n</mi><mo>=</mo><mi>p</mi><mo>−</mo><mn>1</mn></math></span>. Our method involves a detailed comparison of the Picard spectral sequence, the homotopy fixed point spectral sequence, and an auxiliary <em>β</em>-inverted homotopy fixed point spectral sequence whose input is the Farrell-Tate cohomology of the Morava stabilizer group. Along the way, we deduce that the <span><math><mi>K</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>-local Adams-Novikov spectral sequence for the sphere has a horizontal vanishing line at <span><math><mn>3</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></math></span> on the <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn></mrow></msub></math></span>-page.</div><div>The same analysis also allows us to express the exotic Picard group of <span><math><mi>K</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>-local modules over the homotopy fixed points spectrum <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>h</mi><mi>N</mi></mrow></msubsup></math></span>, where <em>N</em> is the normalizer in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of a finite cyclic subgroup of order <em>p</em>, as a subquotient of a single continuous cohomology group <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>N</mi><mo>,</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><msub><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"376 \",\"pages\":\"Article 109445\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864125002433\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125002433","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Bounding the K(p − 1)-local exotic Picard group at p > 3
In this paper, we bound the descent filtration of the exotic Picard group , for a prime number and . Our method involves a detailed comparison of the Picard spectral sequence, the homotopy fixed point spectral sequence, and an auxiliary β-inverted homotopy fixed point spectral sequence whose input is the Farrell-Tate cohomology of the Morava stabilizer group. Along the way, we deduce that the -local Adams-Novikov spectral sequence for the sphere has a horizontal vanishing line at on the -page.
The same analysis also allows us to express the exotic Picard group of -local modules over the homotopy fixed points spectrum , where N is the normalizer in of a finite cyclic subgroup of order p, as a subquotient of a single continuous cohomology group .
期刊介绍:
Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology.
At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.