Runze Yang , Tianjiao Feng , Bin Wang , Wenzhao Guo , Fenzhong Wang , Zuoxiao Wang , Xiaoyu Liang , Zekun Zhao , Shilei Wang , Saskia Keesstra , Artemi Cerdà
{"title":"2010-2023年密云库区土壤侵蚀和面源污染对不同降雨、植被和整地措施的响应","authors":"Runze Yang , Tianjiao Feng , Bin Wang , Wenzhao Guo , Fenzhong Wang , Zuoxiao Wang , Xiaoyu Liang , Zekun Zhao , Shilei Wang , Saskia Keesstra , Artemi Cerdà","doi":"10.1016/j.iswcr.2025.07.006","DOIUrl":null,"url":null,"abstract":"<div><div>Soil erosion and non-point source pollution are critical global environmental issues, with profound implications for ecosystems, agricultural productivity, and water quality. These problems are especially exacerbated in regions subjected to intense rainfall, where their impacts can be particularly severe. In China, the suburban areas of Beijing have experienced considerable challenges associated with both soil erosion and non-point source pollution. Under different rainfall types, the impact mechanisms of rainfall, vegetation, and land preparation on soil erosion and non-point source pollution are highly complex and have not yet been fully understood. This study is based on soil erosion (runoff, sediment yield) and non-point source pollution (TN, Total nitrogen; TP, Total phosphorus; COD, Chemical Oxygen Demand) data from 130 erosive rainfall events (Classified as light, moderate, heavy and extreme rainfall based on 24-h precipitation) across 16 runoff plots from 2010 to 2023. The runoff plots consist of different vegetation and land preparation measures. The characteristics of soil erosion and non-point source pollution under four different rainfall types and different soil conservation measures were compared. Additionally, the impacts of rainfall, vegetation, and land preparation on soil erosion and non-point source pollution under different rainfall types were explored. The results indicate that the frequency of extreme rainfall events accounts for only 16.9 % of erosive rainfall, yet the runoff, sediment yield, TN, TP, and COD they generate account for 40.7 %, 35.0 %, 37.9 %, 33.4 %, and 41.9 % of the total, respectively. Vegetation and land preparation measures have a significant effect on reducing runoff, sediment yield, TN, TP, and COD. The primary factor influencing runoff, TN, TP, and COD was maximum 30-min rainfall intensity (I<sub>30</sub>), with correlation coefficients of 0.33, 0.20, 0.30, and 0.28, respectively (<em>p</em> < 0.01). As rainfall intensity increases, the contribution of vegetation to soil erosion and non-point source pollution increases from 0.7 % under light rainfall to 41.1 % under extreme rainfall. The combined effect of vegetation and land preparation increases from 1.7 % to 14.4 % under extreme rainfall. Under the same rainfall conditions, the contribution of vegetation and land preparation to soil erosion is significantly higher than that to non-point source pollution. The study identifies the mechanisms by which rainfall, vegetation, and land preparation influence soil erosion and non-point source pollution under varying rainfall conditions. These findings offer valuable insights for soil conservation and non-point source pollution management, particularly in areas experiencing extreme rainfall events.</div></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"13 4","pages":"Pages 892-908"},"PeriodicalIF":7.3000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response of soil erosion and non-point source pollution to different rainfall, vegetation and land preparation measures in Miyun reservoir area during 2010–2023\",\"authors\":\"Runze Yang , Tianjiao Feng , Bin Wang , Wenzhao Guo , Fenzhong Wang , Zuoxiao Wang , Xiaoyu Liang , Zekun Zhao , Shilei Wang , Saskia Keesstra , Artemi Cerdà\",\"doi\":\"10.1016/j.iswcr.2025.07.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soil erosion and non-point source pollution are critical global environmental issues, with profound implications for ecosystems, agricultural productivity, and water quality. These problems are especially exacerbated in regions subjected to intense rainfall, where their impacts can be particularly severe. In China, the suburban areas of Beijing have experienced considerable challenges associated with both soil erosion and non-point source pollution. Under different rainfall types, the impact mechanisms of rainfall, vegetation, and land preparation on soil erosion and non-point source pollution are highly complex and have not yet been fully understood. This study is based on soil erosion (runoff, sediment yield) and non-point source pollution (TN, Total nitrogen; TP, Total phosphorus; COD, Chemical Oxygen Demand) data from 130 erosive rainfall events (Classified as light, moderate, heavy and extreme rainfall based on 24-h precipitation) across 16 runoff plots from 2010 to 2023. The runoff plots consist of different vegetation and land preparation measures. The characteristics of soil erosion and non-point source pollution under four different rainfall types and different soil conservation measures were compared. Additionally, the impacts of rainfall, vegetation, and land preparation on soil erosion and non-point source pollution under different rainfall types were explored. The results indicate that the frequency of extreme rainfall events accounts for only 16.9 % of erosive rainfall, yet the runoff, sediment yield, TN, TP, and COD they generate account for 40.7 %, 35.0 %, 37.9 %, 33.4 %, and 41.9 % of the total, respectively. Vegetation and land preparation measures have a significant effect on reducing runoff, sediment yield, TN, TP, and COD. The primary factor influencing runoff, TN, TP, and COD was maximum 30-min rainfall intensity (I<sub>30</sub>), with correlation coefficients of 0.33, 0.20, 0.30, and 0.28, respectively (<em>p</em> < 0.01). As rainfall intensity increases, the contribution of vegetation to soil erosion and non-point source pollution increases from 0.7 % under light rainfall to 41.1 % under extreme rainfall. The combined effect of vegetation and land preparation increases from 1.7 % to 14.4 % under extreme rainfall. Under the same rainfall conditions, the contribution of vegetation and land preparation to soil erosion is significantly higher than that to non-point source pollution. The study identifies the mechanisms by which rainfall, vegetation, and land preparation influence soil erosion and non-point source pollution under varying rainfall conditions. These findings offer valuable insights for soil conservation and non-point source pollution management, particularly in areas experiencing extreme rainfall events.</div></div>\",\"PeriodicalId\":48622,\"journal\":{\"name\":\"International Soil and Water Conservation Research\",\"volume\":\"13 4\",\"pages\":\"Pages 892-908\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Soil and Water Conservation Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095633925000759\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633925000759","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Response of soil erosion and non-point source pollution to different rainfall, vegetation and land preparation measures in Miyun reservoir area during 2010–2023
Soil erosion and non-point source pollution are critical global environmental issues, with profound implications for ecosystems, agricultural productivity, and water quality. These problems are especially exacerbated in regions subjected to intense rainfall, where their impacts can be particularly severe. In China, the suburban areas of Beijing have experienced considerable challenges associated with both soil erosion and non-point source pollution. Under different rainfall types, the impact mechanisms of rainfall, vegetation, and land preparation on soil erosion and non-point source pollution are highly complex and have not yet been fully understood. This study is based on soil erosion (runoff, sediment yield) and non-point source pollution (TN, Total nitrogen; TP, Total phosphorus; COD, Chemical Oxygen Demand) data from 130 erosive rainfall events (Classified as light, moderate, heavy and extreme rainfall based on 24-h precipitation) across 16 runoff plots from 2010 to 2023. The runoff plots consist of different vegetation and land preparation measures. The characteristics of soil erosion and non-point source pollution under four different rainfall types and different soil conservation measures were compared. Additionally, the impacts of rainfall, vegetation, and land preparation on soil erosion and non-point source pollution under different rainfall types were explored. The results indicate that the frequency of extreme rainfall events accounts for only 16.9 % of erosive rainfall, yet the runoff, sediment yield, TN, TP, and COD they generate account for 40.7 %, 35.0 %, 37.9 %, 33.4 %, and 41.9 % of the total, respectively. Vegetation and land preparation measures have a significant effect on reducing runoff, sediment yield, TN, TP, and COD. The primary factor influencing runoff, TN, TP, and COD was maximum 30-min rainfall intensity (I30), with correlation coefficients of 0.33, 0.20, 0.30, and 0.28, respectively (p < 0.01). As rainfall intensity increases, the contribution of vegetation to soil erosion and non-point source pollution increases from 0.7 % under light rainfall to 41.1 % under extreme rainfall. The combined effect of vegetation and land preparation increases from 1.7 % to 14.4 % under extreme rainfall. Under the same rainfall conditions, the contribution of vegetation and land preparation to soil erosion is significantly higher than that to non-point source pollution. The study identifies the mechanisms by which rainfall, vegetation, and land preparation influence soil erosion and non-point source pollution under varying rainfall conditions. These findings offer valuable insights for soil conservation and non-point source pollution management, particularly in areas experiencing extreme rainfall events.
期刊介绍:
The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation.
The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards.
Examples of appropriate topical areas include (but are not limited to):
• Conservation models, tools, and technologies
• Conservation agricultural
• Soil health resources, indicators, assessment, and management
• Land degradation
• Sustainable development
• Soil erosion and its control
• Soil erosion processes
• Water resources assessment and management
• Watershed management
• Soil erosion models
• Literature review on topics related soil and water conservation research