通过3D打印辅助设计负泊松比结构电极实现缓冲冲击的可压缩电池

IF 6.3 3区 综合性期刊 Q1 Multidisciplinary
Yunlong Li , Xihai Ni , Shijun Zhu , Jiaming Li , Chi Guo , Mengli Li , Jiani Gong , Xianglin Zhou , Ji Lang , Qiang Gao , Jiawen Zhang , Yunfei Chen , Zhiyang Lyu
{"title":"通过3D打印辅助设计负泊松比结构电极实现缓冲冲击的可压缩电池","authors":"Yunlong Li ,&nbsp;Xihai Ni ,&nbsp;Shijun Zhu ,&nbsp;Jiaming Li ,&nbsp;Chi Guo ,&nbsp;Mengli Li ,&nbsp;Jiani Gong ,&nbsp;Xianglin Zhou ,&nbsp;Ji Lang ,&nbsp;Qiang Gao ,&nbsp;Jiawen Zhang ,&nbsp;Yunfei Chen ,&nbsp;Zhiyang Lyu","doi":"10.1016/j.fmre.2025.01.010","DOIUrl":null,"url":null,"abstract":"<div><div>Deformable batteries with compressive and impact-buffered abilities are essential for enhancing battery safety. However, existing compressible electrodes often face limited physical deformation and generate high stress, leading to package bulges of batteries. Here, we present a metamaterial-inspired design to develop negative Poisson's ratio (NPR) structural electrodes using a directional freezing 3D printing-assisted strategy. This approach incorporates both macroscopic NPR structures and microscopic directional porous structures, which enhances ion transport, improves compressibility and provides impact resistance, effectively preventing package bulges during compression. Consequently, the electrodes demonstrate a high 50% compressible deformation and recover their original state even after 50 cycles of 25% compression. The 3D-printed lithium iron phosphate cathodes deliver a high average specific capacity of 153 mAh/g over 100 cycles and exhibit outstanding rate capability. Furthermore, the assembled full cell maintains both excellent compressibility and impact-buffered resistance, highlighting its potential applications. This innovative design of NPR metamaterial-structured electrodes provides a universal platform for developing the next generation of impact-buffered, compressible structural batteries.</div></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":"5 5","pages":"Pages 2248-2255"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving impact-buffered compressible batteries through 3D printing-assisted design of negative Poisson's ratio structural electrodes\",\"authors\":\"Yunlong Li ,&nbsp;Xihai Ni ,&nbsp;Shijun Zhu ,&nbsp;Jiaming Li ,&nbsp;Chi Guo ,&nbsp;Mengli Li ,&nbsp;Jiani Gong ,&nbsp;Xianglin Zhou ,&nbsp;Ji Lang ,&nbsp;Qiang Gao ,&nbsp;Jiawen Zhang ,&nbsp;Yunfei Chen ,&nbsp;Zhiyang Lyu\",\"doi\":\"10.1016/j.fmre.2025.01.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deformable batteries with compressive and impact-buffered abilities are essential for enhancing battery safety. However, existing compressible electrodes often face limited physical deformation and generate high stress, leading to package bulges of batteries. Here, we present a metamaterial-inspired design to develop negative Poisson's ratio (NPR) structural electrodes using a directional freezing 3D printing-assisted strategy. This approach incorporates both macroscopic NPR structures and microscopic directional porous structures, which enhances ion transport, improves compressibility and provides impact resistance, effectively preventing package bulges during compression. Consequently, the electrodes demonstrate a high 50% compressible deformation and recover their original state even after 50 cycles of 25% compression. The 3D-printed lithium iron phosphate cathodes deliver a high average specific capacity of 153 mAh/g over 100 cycles and exhibit outstanding rate capability. Furthermore, the assembled full cell maintains both excellent compressibility and impact-buffered resistance, highlighting its potential applications. This innovative design of NPR metamaterial-structured electrodes provides a universal platform for developing the next generation of impact-buffered, compressible structural batteries.</div></div>\",\"PeriodicalId\":34602,\"journal\":{\"name\":\"Fundamental Research\",\"volume\":\"5 5\",\"pages\":\"Pages 2248-2255\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667325825000627\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325825000627","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

具有抗压和缓冲冲击能力的可变形电池是提高电池安全性的必要条件。然而,现有的可压缩电极往往面临有限的物理变形和产生高应力,导致电池的封装膨胀。在这里,我们提出了一种超材料启发的设计,利用定向冻结3D打印辅助策略来开发负泊松比(NPR)结构电极。该方法结合了宏观的NPR结构和微观的定向多孔结构,增强了离子传输,提高了可压缩性,提供了抗冲击性,有效地防止了压缩过程中包装的凸起。因此,电极表现出高达50%的可压缩变形,即使经过50次25%的压缩循环也能恢复其原始状态。3d打印的磷酸铁锂阴极在100次循环中提供了153 mAh/g的高平均比容量,并表现出出色的倍率能力。此外,组装的全电池保持了优异的可压缩性和抗冲击缓冲性能,突出了其潜在的应用前景。这种创新设计的NPR超材料结构电极为开发下一代缓冲冲击、可压缩结构电池提供了一个通用平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Achieving impact-buffered compressible batteries through 3D printing-assisted design of negative Poisson's ratio structural electrodes

Achieving impact-buffered compressible batteries through 3D printing-assisted design of negative Poisson's ratio structural electrodes
Deformable batteries with compressive and impact-buffered abilities are essential for enhancing battery safety. However, existing compressible electrodes often face limited physical deformation and generate high stress, leading to package bulges of batteries. Here, we present a metamaterial-inspired design to develop negative Poisson's ratio (NPR) structural electrodes using a directional freezing 3D printing-assisted strategy. This approach incorporates both macroscopic NPR structures and microscopic directional porous structures, which enhances ion transport, improves compressibility and provides impact resistance, effectively preventing package bulges during compression. Consequently, the electrodes demonstrate a high 50% compressible deformation and recover their original state even after 50 cycles of 25% compression. The 3D-printed lithium iron phosphate cathodes deliver a high average specific capacity of 153 mAh/g over 100 cycles and exhibit outstanding rate capability. Furthermore, the assembled full cell maintains both excellent compressibility and impact-buffered resistance, highlighting its potential applications. This innovative design of NPR metamaterial-structured electrodes provides a universal platform for developing the next generation of impact-buffered, compressible structural batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fundamental Research
Fundamental Research Multidisciplinary-Multidisciplinary
CiteScore
4.00
自引率
1.60%
发文量
294
审稿时长
79 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信