{"title":"基于电阻抗断层成像(EIT)的细胞内电导率成像无创细胞检测","authors":"Songshi Li, Daisuke Kawashima, Zeyang Dai, Nobuyuki Aoki, Masahiro Takei","doi":"10.1039/d5lc00466g","DOIUrl":null,"url":null,"abstract":"Electrical impedance tomography (EIT)-based intracellular conductivity imaging is newly proposed as a non-invasive technique for mapping the electrical properties of living cells at the single-cell scale. In order to achieve this, a micro-EIT system is developed, which integrates two main components: a custom-designed micro-EIT sensor and a frequency-differential EIT coupled with a single-cell equivalent circuit-based reconstruction algorithm. The micro-EIT sensor is designed to match single-cell scale and fabricated on a glass substrate by electron beam lithography, which enables high spatial resolution (7 μm electrode width, 40 μm spacing), stable frequency response, and signal-to-noise ratios typically ranging from 50 to 200. The frequency-difference EIT achieves the reconstruction of conductivity distributions of the cytoplasm <em>σ<small><sub>cyt</sub></small></em> and nucleoplasm <em>σ<small><sub>nuc</sub></small></em> through current response analysis based on the equivalent circuit model of single-cell. To evaluate the performance, impedance spectra were measured to reconstruct the intracellular conductivity images in three types of Medical Research Council 5 human lung fibroblast cell lines (MRC-5) with different protein expressions. As a result, <em>σ<small><sub>cyt</sub></small></em> and <em>σ<small><sub>nuc</sub></small></em> of three cell types were successfully reconstructed, which revealed clear differences corresponding to variations in protein expression. The brightfield and fluorescence observation were also performed to verify the EIT results, which demonstrated the reliability of the coordinates and size of the cytoplasm and nucleoplasm. This work represents the first demonstration of non-invasive intracellular conductivity mapping that distinguishes subcellular structures based on electrical properties.","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":"5 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical Impedance Tomography (EIT)-Based Intracellular Conductivity Imaging for Non-invasive Cell Detection\",\"authors\":\"Songshi Li, Daisuke Kawashima, Zeyang Dai, Nobuyuki Aoki, Masahiro Takei\",\"doi\":\"10.1039/d5lc00466g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical impedance tomography (EIT)-based intracellular conductivity imaging is newly proposed as a non-invasive technique for mapping the electrical properties of living cells at the single-cell scale. In order to achieve this, a micro-EIT system is developed, which integrates two main components: a custom-designed micro-EIT sensor and a frequency-differential EIT coupled with a single-cell equivalent circuit-based reconstruction algorithm. The micro-EIT sensor is designed to match single-cell scale and fabricated on a glass substrate by electron beam lithography, which enables high spatial resolution (7 μm electrode width, 40 μm spacing), stable frequency response, and signal-to-noise ratios typically ranging from 50 to 200. The frequency-difference EIT achieves the reconstruction of conductivity distributions of the cytoplasm <em>σ<small><sub>cyt</sub></small></em> and nucleoplasm <em>σ<small><sub>nuc</sub></small></em> through current response analysis based on the equivalent circuit model of single-cell. To evaluate the performance, impedance spectra were measured to reconstruct the intracellular conductivity images in three types of Medical Research Council 5 human lung fibroblast cell lines (MRC-5) with different protein expressions. As a result, <em>σ<small><sub>cyt</sub></small></em> and <em>σ<small><sub>nuc</sub></small></em> of three cell types were successfully reconstructed, which revealed clear differences corresponding to variations in protein expression. The brightfield and fluorescence observation were also performed to verify the EIT results, which demonstrated the reliability of the coordinates and size of the cytoplasm and nucleoplasm. This work represents the first demonstration of non-invasive intracellular conductivity mapping that distinguishes subcellular structures based on electrical properties.\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d5lc00466g\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5lc00466g","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Electrical impedance tomography (EIT)-based intracellular conductivity imaging is newly proposed as a non-invasive technique for mapping the electrical properties of living cells at the single-cell scale. In order to achieve this, a micro-EIT system is developed, which integrates two main components: a custom-designed micro-EIT sensor and a frequency-differential EIT coupled with a single-cell equivalent circuit-based reconstruction algorithm. The micro-EIT sensor is designed to match single-cell scale and fabricated on a glass substrate by electron beam lithography, which enables high spatial resolution (7 μm electrode width, 40 μm spacing), stable frequency response, and signal-to-noise ratios typically ranging from 50 to 200. The frequency-difference EIT achieves the reconstruction of conductivity distributions of the cytoplasm σcyt and nucleoplasm σnuc through current response analysis based on the equivalent circuit model of single-cell. To evaluate the performance, impedance spectra were measured to reconstruct the intracellular conductivity images in three types of Medical Research Council 5 human lung fibroblast cell lines (MRC-5) with different protein expressions. As a result, σcyt and σnuc of three cell types were successfully reconstructed, which revealed clear differences corresponding to variations in protein expression. The brightfield and fluorescence observation were also performed to verify the EIT results, which demonstrated the reliability of the coordinates and size of the cytoplasm and nucleoplasm. This work represents the first demonstration of non-invasive intracellular conductivity mapping that distinguishes subcellular structures based on electrical properties.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.