Taushif Ahmed, Syed Mehedi Hasan, Andreas Rapakoulias
{"title":"用Mellin-Barnes表示的相空间积分","authors":"Taushif Ahmed, Syed Mehedi Hasan, Andreas Rapakoulias","doi":"10.1103/xj2h-89q7","DOIUrl":null,"url":null,"abstract":"This letter introduces a novel analytical approach to calculating phase-space integrals, crucial for precision in particle physics. We develop a method to compute angular components using multifold Mellin-Barnes integrals, yielding results in terms of Goncharov polylogarithms for integrals involving three denominators. Our results include expressions for massless momenta to O</a:mi>(</a:mo>ε</a:mi>2</a:mn></a:msup>)</a:mo></a:math> and for massive momentum to <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:mi mathvariant=\"script\">O</f:mi><f:mo stretchy=\"false\">(</f:mo><f:mi>ε</f:mi><f:mo stretchy=\"false\">)</f:mo></f:math>. We derive recursion relations that reduce integrals with higher powers of denominators to simpler ones. We detail how to combine the angular part with the radial one which requires a careful handling of singularities.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"93 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase-space integrals through Mellin-Barnes representation\",\"authors\":\"Taushif Ahmed, Syed Mehedi Hasan, Andreas Rapakoulias\",\"doi\":\"10.1103/xj2h-89q7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter introduces a novel analytical approach to calculating phase-space integrals, crucial for precision in particle physics. We develop a method to compute angular components using multifold Mellin-Barnes integrals, yielding results in terms of Goncharov polylogarithms for integrals involving three denominators. Our results include expressions for massless momenta to O</a:mi>(</a:mo>ε</a:mi>2</a:mn></a:msup>)</a:mo></a:math> and for massive momentum to <f:math xmlns:f=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><f:mi mathvariant=\\\"script\\\">O</f:mi><f:mo stretchy=\\\"false\\\">(</f:mo><f:mi>ε</f:mi><f:mo stretchy=\\\"false\\\">)</f:mo></f:math>. We derive recursion relations that reduce integrals with higher powers of denominators to simpler ones. We detail how to combine the angular part with the radial one which requires a careful handling of singularities.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/xj2h-89q7\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/xj2h-89q7","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Phase-space integrals through Mellin-Barnes representation
This letter introduces a novel analytical approach to calculating phase-space integrals, crucial for precision in particle physics. We develop a method to compute angular components using multifold Mellin-Barnes integrals, yielding results in terms of Goncharov polylogarithms for integrals involving three denominators. Our results include expressions for massless momenta to O(ε2) and for massive momentum to O(ε). We derive recursion relations that reduce integrals with higher powers of denominators to simpler ones. We detail how to combine the angular part with the radial one which requires a careful handling of singularities.
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.