用Mellin-Barnes表示的相空间积分

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Taushif Ahmed, Syed Mehedi Hasan, Andreas Rapakoulias
{"title":"用Mellin-Barnes表示的相空间积分","authors":"Taushif Ahmed, Syed Mehedi Hasan, Andreas Rapakoulias","doi":"10.1103/xj2h-89q7","DOIUrl":null,"url":null,"abstract":"This letter introduces a novel analytical approach to calculating phase-space integrals, crucial for precision in particle physics. We develop a method to compute angular components using multifold Mellin-Barnes integrals, yielding results in terms of Goncharov polylogarithms for integrals involving three denominators. Our results include expressions for massless momenta to O</a:mi>(</a:mo>ε</a:mi>2</a:mn></a:msup>)</a:mo></a:math> and for massive momentum to <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:mi mathvariant=\"script\">O</f:mi><f:mo stretchy=\"false\">(</f:mo><f:mi>ε</f:mi><f:mo stretchy=\"false\">)</f:mo></f:math>. We derive recursion relations that reduce integrals with higher powers of denominators to simpler ones. We detail how to combine the angular part with the radial one which requires a careful handling of singularities.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"93 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase-space integrals through Mellin-Barnes representation\",\"authors\":\"Taushif Ahmed, Syed Mehedi Hasan, Andreas Rapakoulias\",\"doi\":\"10.1103/xj2h-89q7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter introduces a novel analytical approach to calculating phase-space integrals, crucial for precision in particle physics. We develop a method to compute angular components using multifold Mellin-Barnes integrals, yielding results in terms of Goncharov polylogarithms for integrals involving three denominators. Our results include expressions for massless momenta to O</a:mi>(</a:mo>ε</a:mi>2</a:mn></a:msup>)</a:mo></a:math> and for massive momentum to <f:math xmlns:f=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><f:mi mathvariant=\\\"script\\\">O</f:mi><f:mo stretchy=\\\"false\\\">(</f:mo><f:mi>ε</f:mi><f:mo stretchy=\\\"false\\\">)</f:mo></f:math>. We derive recursion relations that reduce integrals with higher powers of denominators to simpler ones. We detail how to combine the angular part with the radial one which requires a careful handling of singularities.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/xj2h-89q7\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/xj2h-89q7","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

这封信介绍了一种新的分析方法来计算相空间积分,这对粒子物理的精度至关重要。我们开发了一种使用多重梅林-巴恩斯积分计算角分量的方法,对涉及三个分母的积分产生Goncharov多对数的结果。我们的结果包括无质量动量到O(ε2)和有质量动量到O(ε)的表达式。我们推导递归关系,将高次幂的积分简化为简单的积分。我们详细介绍了如何将角部分与径向部分结合起来,这需要仔细处理奇点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase-space integrals through Mellin-Barnes representation
This letter introduces a novel analytical approach to calculating phase-space integrals, crucial for precision in particle physics. We develop a method to compute angular components using multifold Mellin-Barnes integrals, yielding results in terms of Goncharov polylogarithms for integrals involving three denominators. Our results include expressions for massless momenta to O(ε2) and for massive momentum to O(ε). We derive recursion relations that reduce integrals with higher powers of denominators to simpler ones. We detail how to combine the angular part with the radial one which requires a careful handling of singularities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信