{"title":"纳米相中Ln3+的空间富集和紫外激光玻璃陶瓷多光子上转换抽运的动力学脉冲压缩","authors":"Qunhuo Liu, Xuezhe Dong, Yujie Liu, Weilin Chen, Yingying Cui, Abhishek Wadhwa, Ting Wang, Xvsheng Qiao, Jincheng Du, Guodong Qian, Xianping Fan, Siu Fung Yu","doi":"10.1002/lpor.202501591","DOIUrl":null,"url":null,"abstract":"The multiphoton upconversion of near-infrared (NIR) light into challenging UV emission is of great importance and interest for both fundamental research and advanced applications. However, the NIR-to-UV multiphoton upconversion process is inherently inefficient. In this work, a strategy is presented to enhance NIR-to-UV conversion by integrating spatial and temporal control of energy transfer (ET) in lanthanide-doped transparent materials. Through a molecular dynamics simulation-assisted glass-ceramic design approach, the spatial distance is reduced between Yb-Tm-Gd ions and accelerated their ET rates, achieving a 267-fold enhancement of UV emission at 311 nm. Furthermore, this is showed that energy depletion in intermediate excited levels and back ET can be suppressed through short pulse-width excitation, thereby increasing the proportion of UV photons in upconversion emissions from 1.61% to 38.81%. Consequently, low-threshold, room-temperature random lasing at 311 nm under 980 nm ns laser excitation is realized. These findings establish a novel design framework for developing compact solid-state UV lasers with practical applicability.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"4 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Ln3+-Enrichment in Nano-Phases and kinetic Pulse-Compression on Multiphoton Upconversion Pumping Toward UV Lasing Glass-Ceramics\",\"authors\":\"Qunhuo Liu, Xuezhe Dong, Yujie Liu, Weilin Chen, Yingying Cui, Abhishek Wadhwa, Ting Wang, Xvsheng Qiao, Jincheng Du, Guodong Qian, Xianping Fan, Siu Fung Yu\",\"doi\":\"10.1002/lpor.202501591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multiphoton upconversion of near-infrared (NIR) light into challenging UV emission is of great importance and interest for both fundamental research and advanced applications. However, the NIR-to-UV multiphoton upconversion process is inherently inefficient. In this work, a strategy is presented to enhance NIR-to-UV conversion by integrating spatial and temporal control of energy transfer (ET) in lanthanide-doped transparent materials. Through a molecular dynamics simulation-assisted glass-ceramic design approach, the spatial distance is reduced between Yb-Tm-Gd ions and accelerated their ET rates, achieving a 267-fold enhancement of UV emission at 311 nm. Furthermore, this is showed that energy depletion in intermediate excited levels and back ET can be suppressed through short pulse-width excitation, thereby increasing the proportion of UV photons in upconversion emissions from 1.61% to 38.81%. Consequently, low-threshold, room-temperature random lasing at 311 nm under 980 nm ns laser excitation is realized. These findings establish a novel design framework for developing compact solid-state UV lasers with practical applicability.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202501591\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202501591","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Spatial Ln3+-Enrichment in Nano-Phases and kinetic Pulse-Compression on Multiphoton Upconversion Pumping Toward UV Lasing Glass-Ceramics
The multiphoton upconversion of near-infrared (NIR) light into challenging UV emission is of great importance and interest for both fundamental research and advanced applications. However, the NIR-to-UV multiphoton upconversion process is inherently inefficient. In this work, a strategy is presented to enhance NIR-to-UV conversion by integrating spatial and temporal control of energy transfer (ET) in lanthanide-doped transparent materials. Through a molecular dynamics simulation-assisted glass-ceramic design approach, the spatial distance is reduced between Yb-Tm-Gd ions and accelerated their ET rates, achieving a 267-fold enhancement of UV emission at 311 nm. Furthermore, this is showed that energy depletion in intermediate excited levels and back ET can be suppressed through short pulse-width excitation, thereby increasing the proportion of UV photons in upconversion emissions from 1.61% to 38.81%. Consequently, low-threshold, room-temperature random lasing at 311 nm under 980 nm ns laser excitation is realized. These findings establish a novel design framework for developing compact solid-state UV lasers with practical applicability.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.