Damon Cleaver, Christopher McCabe, Ciaran A. J. O’Hare
{"title":"用水声探测器探测超重暗物质","authors":"Damon Cleaver, Christopher McCabe, Ciaran A. J. O’Hare","doi":"10.1103/jpzr-msx1","DOIUrl":null,"url":null,"abstract":"Ultraheavy dark matter candidates evade traditional direct detection experiments due to their low particle flux. We explore the potential of large underwater acoustic arrays, originally developed for ultrahigh energy neutrino detection, to detect ultraheavy dark matter interactions. These particles deposit energy via nuclear scattering while traversing seawater, generating thermoacoustic waves detectable by hydrophones. We present the first robust first-principles calculation of dark matter-induced acoustic waves, establishing a theoretical framework for signal modeling and sensitivity estimates. Our framework incorporates frequency-dependent attenuation effects, including viscous and chemical relaxation, not considered in previous calculations. A sensitivity analysis for a hypothetical 100</a:mn></a:mtext></a:mtext>km</a:mi>3</a:mn></a:msup></a:math> hydrophone array in the Mediterranean Sea demonstrates that such an array could extend sensitivity to the previously unexplored mass range of <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mn>0.1</c:mn><c:mo>−</c:mo><c:mn>10</c:mn><c:mtext> </c:mtext><c:mtext> </c:mtext><c:mi mathvariant=\"normal\">μ</c:mi><c:mi mathvariant=\"normal\">g</c:mi></c:mrow></c:math> (<g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mo>∼</g:mo><g:msup><g:mn>10</g:mn><g:mn>20</g:mn></g:msup><g:mi>–</g:mi><g:msup><g:mn>10</g:mn><g:mn>23</g:mn></g:msup><g:mtext> </g:mtext><g:mtext> </g:mtext><g:mi>GeV</g:mi></g:math>), with sensitivity to both spin-independent and spin-dependent interactions. Our results establish acoustic detection as a complementary dark matter search method, enabling searches in existing hydrophone data and informing future detector designs.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"97 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Listening for ultraheavy dark matter with underwater acoustic detectors\",\"authors\":\"Damon Cleaver, Christopher McCabe, Ciaran A. J. O’Hare\",\"doi\":\"10.1103/jpzr-msx1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultraheavy dark matter candidates evade traditional direct detection experiments due to their low particle flux. We explore the potential of large underwater acoustic arrays, originally developed for ultrahigh energy neutrino detection, to detect ultraheavy dark matter interactions. These particles deposit energy via nuclear scattering while traversing seawater, generating thermoacoustic waves detectable by hydrophones. We present the first robust first-principles calculation of dark matter-induced acoustic waves, establishing a theoretical framework for signal modeling and sensitivity estimates. Our framework incorporates frequency-dependent attenuation effects, including viscous and chemical relaxation, not considered in previous calculations. A sensitivity analysis for a hypothetical 100</a:mn></a:mtext></a:mtext>km</a:mi>3</a:mn></a:msup></a:math> hydrophone array in the Mediterranean Sea demonstrates that such an array could extend sensitivity to the previously unexplored mass range of <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mrow><c:mn>0.1</c:mn><c:mo>−</c:mo><c:mn>10</c:mn><c:mtext> </c:mtext><c:mtext> </c:mtext><c:mi mathvariant=\\\"normal\\\">μ</c:mi><c:mi mathvariant=\\\"normal\\\">g</c:mi></c:mrow></c:math> (<g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mo>∼</g:mo><g:msup><g:mn>10</g:mn><g:mn>20</g:mn></g:msup><g:mi>–</g:mi><g:msup><g:mn>10</g:mn><g:mn>23</g:mn></g:msup><g:mtext> </g:mtext><g:mtext> </g:mtext><g:mi>GeV</g:mi></g:math>), with sensitivity to both spin-independent and spin-dependent interactions. Our results establish acoustic detection as a complementary dark matter search method, enabling searches in existing hydrophone data and informing future detector designs.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/jpzr-msx1\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/jpzr-msx1","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Listening for ultraheavy dark matter with underwater acoustic detectors
Ultraheavy dark matter candidates evade traditional direct detection experiments due to their low particle flux. We explore the potential of large underwater acoustic arrays, originally developed for ultrahigh energy neutrino detection, to detect ultraheavy dark matter interactions. These particles deposit energy via nuclear scattering while traversing seawater, generating thermoacoustic waves detectable by hydrophones. We present the first robust first-principles calculation of dark matter-induced acoustic waves, establishing a theoretical framework for signal modeling and sensitivity estimates. Our framework incorporates frequency-dependent attenuation effects, including viscous and chemical relaxation, not considered in previous calculations. A sensitivity analysis for a hypothetical 100km3 hydrophone array in the Mediterranean Sea demonstrates that such an array could extend sensitivity to the previously unexplored mass range of 0.1−10μg (∼1020–1023GeV), with sensitivity to both spin-independent and spin-dependent interactions. Our results establish acoustic detection as a complementary dark matter search method, enabling searches in existing hydrophone data and informing future detector designs.
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.