Jack McAlpine, Hrishikesh Tupkar, Sila Alemdar, Adrian Gonzalez-Marcano, Jack S. Verich, Matthew A. Gebbie
{"title":"盐离子液体电解质欠电位沉积放大界面电容","authors":"Jack McAlpine, Hrishikesh Tupkar, Sila Alemdar, Adrian Gonzalez-Marcano, Jack S. Verich, Matthew A. Gebbie","doi":"10.1039/d5ta04148a","DOIUrl":null,"url":null,"abstract":"Rapid growth of intermittent energy sources, such as wind and solar, is causing a resurgence in research on materials and devices that store electrochemical energy. Electrochemical capacitors exhibit promising device characteristics to help level grid scale power fluctuations, including fast charge-discharge kinetics and long device lifetimes. This is especially true for ionic liquids, which promise increased safety and performance, as compared to volatile organic electrolytes commonly used in batteries. However, large scale implementation of ionic liquid-based capacitors remains limited by low device energy densities, as the interfacial capacitance of ionic liquid-electrode interfaces decreases significantly under large polarization. Here, we investigate how incorporating metal cations of varying size and valence into ionic liquids modifies electric double layer formation. We find that alkali cations substantially amplify interfacial capacitance in salt-in-ionic liquid electrolytes, overcoming capacitive limitations caused by ion crowding. Remarkably, we observe capacitive enhancement exceeding 350% in lithium- and sodium-containing electrolytes at Au and Cu electrodes under large polarization, where ion crowding diminishes interfacial capacitance in neat ionic liquids. Our data indicates that metal cation underpotential deposition plays a key role in capacitive enhancement, and we observe that this process can be highly reversible under cycling. Our findings suggest that tuning metal-electrolyte interactions to enable underpotential deposition provides avenues for increasing capacitor performance. This opens the door to additional opportunities for developing devices that could play an essential role in leveling power fluctuations that are inherent to renewable energy grids.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"118 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amplifying Interfacial Capacitance Through Underpotential Deposition in Salt-in-Ionic Liquid Electrolytes\",\"authors\":\"Jack McAlpine, Hrishikesh Tupkar, Sila Alemdar, Adrian Gonzalez-Marcano, Jack S. Verich, Matthew A. Gebbie\",\"doi\":\"10.1039/d5ta04148a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid growth of intermittent energy sources, such as wind and solar, is causing a resurgence in research on materials and devices that store electrochemical energy. Electrochemical capacitors exhibit promising device characteristics to help level grid scale power fluctuations, including fast charge-discharge kinetics and long device lifetimes. This is especially true for ionic liquids, which promise increased safety and performance, as compared to volatile organic electrolytes commonly used in batteries. However, large scale implementation of ionic liquid-based capacitors remains limited by low device energy densities, as the interfacial capacitance of ionic liquid-electrode interfaces decreases significantly under large polarization. Here, we investigate how incorporating metal cations of varying size and valence into ionic liquids modifies electric double layer formation. We find that alkali cations substantially amplify interfacial capacitance in salt-in-ionic liquid electrolytes, overcoming capacitive limitations caused by ion crowding. Remarkably, we observe capacitive enhancement exceeding 350% in lithium- and sodium-containing electrolytes at Au and Cu electrodes under large polarization, where ion crowding diminishes interfacial capacitance in neat ionic liquids. Our data indicates that metal cation underpotential deposition plays a key role in capacitive enhancement, and we observe that this process can be highly reversible under cycling. Our findings suggest that tuning metal-electrolyte interactions to enable underpotential deposition provides avenues for increasing capacitor performance. This opens the door to additional opportunities for developing devices that could play an essential role in leveling power fluctuations that are inherent to renewable energy grids.\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5ta04148a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ta04148a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Amplifying Interfacial Capacitance Through Underpotential Deposition in Salt-in-Ionic Liquid Electrolytes
Rapid growth of intermittent energy sources, such as wind and solar, is causing a resurgence in research on materials and devices that store electrochemical energy. Electrochemical capacitors exhibit promising device characteristics to help level grid scale power fluctuations, including fast charge-discharge kinetics and long device lifetimes. This is especially true for ionic liquids, which promise increased safety and performance, as compared to volatile organic electrolytes commonly used in batteries. However, large scale implementation of ionic liquid-based capacitors remains limited by low device energy densities, as the interfacial capacitance of ionic liquid-electrode interfaces decreases significantly under large polarization. Here, we investigate how incorporating metal cations of varying size and valence into ionic liquids modifies electric double layer formation. We find that alkali cations substantially amplify interfacial capacitance in salt-in-ionic liquid electrolytes, overcoming capacitive limitations caused by ion crowding. Remarkably, we observe capacitive enhancement exceeding 350% in lithium- and sodium-containing electrolytes at Au and Cu electrodes under large polarization, where ion crowding diminishes interfacial capacitance in neat ionic liquids. Our data indicates that metal cation underpotential deposition plays a key role in capacitive enhancement, and we observe that this process can be highly reversible under cycling. Our findings suggest that tuning metal-electrolyte interactions to enable underpotential deposition provides avenues for increasing capacitor performance. This opens the door to additional opportunities for developing devices that could play an essential role in leveling power fluctuations that are inherent to renewable energy grids.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.