岩崩传播概率的经验量化:适当地形描述符的稳健确定

IF 8.4 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Marc Peruzzetto , Bastien Colas , Clara Levy , Jeremy Rohmer , Franck Bourrier
{"title":"岩崩传播概率的经验量化:适当地形描述符的稳健确定","authors":"Marc Peruzzetto ,&nbsp;Bastien Colas ,&nbsp;Clara Levy ,&nbsp;Jeremy Rohmer ,&nbsp;Franck Bourrier","doi":"10.1016/j.enggeo.2025.108370","DOIUrl":null,"url":null,"abstract":"<div><div>The propagation of rockfalls can be assessed through numerical simulations. However, preliminary hazard assessments on representative topographic profiles or hazard mapping at large scales often rely on empirical approaches. They are indeed easily implemented as they use simple geometrical descriptors such as the reach and travel angles. Although they are widely used, to our knowledge no study has ever formally assessed the efficiency of these angles to quantify rockfall propagation in comparison to other topographic descriptors. In this work we use a database of almost 3<!--> <!-->400 topographic profiles connecting rockfall initiation and stopping points and show that the normalized curvilinear length of the profile over 40 m (<span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mrow><mo>(</mo><mn>40</mn><mo>)</mo></mrow></mrow><mrow><mi>H</mi></mrow></msubsup></math></span>), and the normalized area under the profile over 20 m (<span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mrow><mo>(</mo><mn>20</mn><mo>)</mo></mrow></mrow><mrow><mi>H</mi></mrow></msubsup></math></span>) allow to discriminate efficiently between rockfall stopping points, and other points. This is illustrated by comparing propagation probabilities estimated with <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mrow><mo>(</mo><mn>40</mn><mo>)</mo></mrow></mrow><mrow><mi>H</mi></mrow></msubsup></math></span>, <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mrow><mo>(</mo><mn>20</mn><mo>)</mo></mrow></mrow><mrow><mi>H</mi></mrow></msubsup></math></span> and other topographic descriptors, to observed distributions of rockfall stopping point. On the four considered case studies, the mean relative error on travel distances corresponding to propagation probabilities of <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span> is less than 4%. It can be less then than 1% when expected minimum or maximum values of drop heights are used to improve predictions. Although it is difficult to assess the representativeness of results for low propagation probabilities (below <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span>), we show with synthetic representative profiles that the estimation of maximum travel distances with <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mrow><mo>(</mo><mn>40</mn><mo>)</mo></mrow></mrow><mrow><mi>H</mi></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mrow><mo>(</mo><mn>20</mn><mo>)</mo></mrow></mrow><mrow><mi>H</mi></mrow></msubsup></math></span> is overall more robust than with topographic descriptors derived from the whole profile, such as the reach angle. As such, this work paves the way to improving and rationalizing rockfall propagation quantification with simple geometric methods.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"357 ","pages":"Article 108370"},"PeriodicalIF":8.4000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical quantification of rockfall propagation probability: Robust determination of an appropriate topographic descriptor\",\"authors\":\"Marc Peruzzetto ,&nbsp;Bastien Colas ,&nbsp;Clara Levy ,&nbsp;Jeremy Rohmer ,&nbsp;Franck Bourrier\",\"doi\":\"10.1016/j.enggeo.2025.108370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The propagation of rockfalls can be assessed through numerical simulations. However, preliminary hazard assessments on representative topographic profiles or hazard mapping at large scales often rely on empirical approaches. They are indeed easily implemented as they use simple geometrical descriptors such as the reach and travel angles. Although they are widely used, to our knowledge no study has ever formally assessed the efficiency of these angles to quantify rockfall propagation in comparison to other topographic descriptors. In this work we use a database of almost 3<!--> <!-->400 topographic profiles connecting rockfall initiation and stopping points and show that the normalized curvilinear length of the profile over 40 m (<span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mrow><mo>(</mo><mn>40</mn><mo>)</mo></mrow></mrow><mrow><mi>H</mi></mrow></msubsup></math></span>), and the normalized area under the profile over 20 m (<span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mrow><mo>(</mo><mn>20</mn><mo>)</mo></mrow></mrow><mrow><mi>H</mi></mrow></msubsup></math></span>) allow to discriminate efficiently between rockfall stopping points, and other points. This is illustrated by comparing propagation probabilities estimated with <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mrow><mo>(</mo><mn>40</mn><mo>)</mo></mrow></mrow><mrow><mi>H</mi></mrow></msubsup></math></span>, <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mrow><mo>(</mo><mn>20</mn><mo>)</mo></mrow></mrow><mrow><mi>H</mi></mrow></msubsup></math></span> and other topographic descriptors, to observed distributions of rockfall stopping point. On the four considered case studies, the mean relative error on travel distances corresponding to propagation probabilities of <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> and <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span> is less than 4%. It can be less then than 1% when expected minimum or maximum values of drop heights are used to improve predictions. Although it is difficult to assess the representativeness of results for low propagation probabilities (below <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span>), we show with synthetic representative profiles that the estimation of maximum travel distances with <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mrow><mo>(</mo><mn>40</mn><mo>)</mo></mrow></mrow><mrow><mi>H</mi></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>n</mi><mrow><mo>(</mo><mn>20</mn><mo>)</mo></mrow></mrow><mrow><mi>H</mi></mrow></msubsup></math></span> is overall more robust than with topographic descriptors derived from the whole profile, such as the reach angle. As such, this work paves the way to improving and rationalizing rockfall propagation quantification with simple geometric methods.</div></div>\",\"PeriodicalId\":11567,\"journal\":{\"name\":\"Engineering Geology\",\"volume\":\"357 \",\"pages\":\"Article 108370\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013795225004661\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795225004661","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

岩崩的传播可以通过数值模拟来评估。然而,对代表性地形剖面的初步危害评估或大尺度的危害测绘往往依赖于经验方法。它们确实很容易实现,因为它们使用简单的几何描述符,如到达角和移动角。虽然它们被广泛使用,但据我们所知,与其他地形描述器相比,还没有研究正式评估过这些角度量化岩崩传播的效率。在这项工作中,我们使用了一个连接岩崩起始点和停止点的近3400个地形剖面的数据库,并表明超过40米的剖面的归一化曲线长度(Cn(40)H)和超过20米的剖面下的归一化面积(An(20)H)可以有效地区分岩崩停止点和其他点。通过比较Cn(40)H, An(20)H和其他地形描述符估计的传播概率,与观测到的岩崩停止点分布,可以说明这一点。在四个考虑的案例研究中,与10−1和10−2传播概率相对应的旅行距离的平均相对误差小于4%。当使用期望的最小或最大落差值来改进预测时,它可以小于1%。尽管很难评估低传播概率(低于10−3)的结果的代表性,但我们用合成的代表性剖面表明,用Cn(40)H和An(20)H估计的最大传播距离总体上比用从整个剖面(如到达角)导出的地形描述符更可靠。因此,本工作为用简单的几何方法改进和合理化岩崩传播量化铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirical quantification of rockfall propagation probability: Robust determination of an appropriate topographic descriptor
The propagation of rockfalls can be assessed through numerical simulations. However, preliminary hazard assessments on representative topographic profiles or hazard mapping at large scales often rely on empirical approaches. They are indeed easily implemented as they use simple geometrical descriptors such as the reach and travel angles. Although they are widely used, to our knowledge no study has ever formally assessed the efficiency of these angles to quantify rockfall propagation in comparison to other topographic descriptors. In this work we use a database of almost 3 400 topographic profiles connecting rockfall initiation and stopping points and show that the normalized curvilinear length of the profile over 40 m (Cn(40)H), and the normalized area under the profile over 20 m (An(20)H) allow to discriminate efficiently between rockfall stopping points, and other points. This is illustrated by comparing propagation probabilities estimated with Cn(40)H, An(20)H and other topographic descriptors, to observed distributions of rockfall stopping point. On the four considered case studies, the mean relative error on travel distances corresponding to propagation probabilities of 101 and 102 is less than 4%. It can be less then than 1% when expected minimum or maximum values of drop heights are used to improve predictions. Although it is difficult to assess the representativeness of results for low propagation probabilities (below 103), we show with synthetic representative profiles that the estimation of maximum travel distances with Cn(40)H and An(20)H is overall more robust than with topographic descriptors derived from the whole profile, such as the reach angle. As such, this work paves the way to improving and rationalizing rockfall propagation quantification with simple geometric methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Geology
Engineering Geology 地学-地球科学综合
CiteScore
13.70
自引率
12.20%
发文量
327
审稿时长
5.6 months
期刊介绍: Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信