原位构建Cu-Ni合金纳米线增强乙烯的CO2电化学转化。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kunyu Xu, , , Haoling Yang, , , Licheng Lu, , , Zihao Yang*, , , Juan Zhang*, , , Meiqin Lin, , and , Zhaoxia Dong, 
{"title":"原位构建Cu-Ni合金纳米线增强乙烯的CO2电化学转化。","authors":"Kunyu Xu,&nbsp;, ,&nbsp;Haoling Yang,&nbsp;, ,&nbsp;Licheng Lu,&nbsp;, ,&nbsp;Zihao Yang*,&nbsp;, ,&nbsp;Juan Zhang*,&nbsp;, ,&nbsp;Meiqin Lin,&nbsp;, and ,&nbsp;Zhaoxia Dong,&nbsp;","doi":"10.1021/acsami.5c12049","DOIUrl":null,"url":null,"abstract":"<p >Electrocatalysis CO<sub>2</sub> reduction for ethylene(C<sub>2</sub>H<sub>4</sub>) production based on clean energy is an effective strategy to address energy issues and the climate crisis. However, the limited catalytic selectivity and high production costs of C<sub>2</sub>H<sub>4</sub> hinder its commercial application. Here, we employ a nonprecious metal-doping strategy to <i>in situ</i> construct Cu–Ni alloy nanowires (Cu–Ni NWs) on the gas diffusion layer (GDL). Ni-doping modulated the electronic environment of Cu, significantly improving the product distribution of CO<sub>2</sub> reduction. At −1.0 V, the Faradaic efficiency for C<sub>2</sub>H<sub>4</sub> reached 49.18%, with a current density of 290.01 mA cm<sup>–2</sup>. Furthermore, the Cu–Ni NWs exhibited significant catalytic stability over 40 h. Mechanistic studies indicate that Ni atoms provide more CO<sub>2</sub> adsorption and activation sites on the catalyst surface, facilitating the CO<sub>2</sub>RR. Furthermore, Ni doping significantly enhances the adsorption of the *CO intermediate and lowers the kinetic barrier for C–C coupling, directing the reaction preferentially toward the C<sub>2</sub>H<sub>4</sub> pathway. This work expands the design space for nonprecious metal catalysts, which should be inspiring for the development of low-cost, high-performance CO<sub>2</sub> reduction electrocatalysts.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 40","pages":"56077–56086"},"PeriodicalIF":8.2000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Constructed Cu–Ni Alloy Nanowires Enhance the CO2 Electrochemical Conversion of Ethylene\",\"authors\":\"Kunyu Xu,&nbsp;, ,&nbsp;Haoling Yang,&nbsp;, ,&nbsp;Licheng Lu,&nbsp;, ,&nbsp;Zihao Yang*,&nbsp;, ,&nbsp;Juan Zhang*,&nbsp;, ,&nbsp;Meiqin Lin,&nbsp;, and ,&nbsp;Zhaoxia Dong,&nbsp;\",\"doi\":\"10.1021/acsami.5c12049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Electrocatalysis CO<sub>2</sub> reduction for ethylene(C<sub>2</sub>H<sub>4</sub>) production based on clean energy is an effective strategy to address energy issues and the climate crisis. However, the limited catalytic selectivity and high production costs of C<sub>2</sub>H<sub>4</sub> hinder its commercial application. Here, we employ a nonprecious metal-doping strategy to <i>in situ</i> construct Cu–Ni alloy nanowires (Cu–Ni NWs) on the gas diffusion layer (GDL). Ni-doping modulated the electronic environment of Cu, significantly improving the product distribution of CO<sub>2</sub> reduction. At −1.0 V, the Faradaic efficiency for C<sub>2</sub>H<sub>4</sub> reached 49.18%, with a current density of 290.01 mA cm<sup>–2</sup>. Furthermore, the Cu–Ni NWs exhibited significant catalytic stability over 40 h. Mechanistic studies indicate that Ni atoms provide more CO<sub>2</sub> adsorption and activation sites on the catalyst surface, facilitating the CO<sub>2</sub>RR. Furthermore, Ni doping significantly enhances the adsorption of the *CO intermediate and lowers the kinetic barrier for C–C coupling, directing the reaction preferentially toward the C<sub>2</sub>H<sub>4</sub> pathway. This work expands the design space for nonprecious metal catalysts, which should be inspiring for the development of low-cost, high-performance CO<sub>2</sub> reduction electrocatalysts.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 40\",\"pages\":\"56077–56086\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c12049\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c12049","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于清洁能源的电催化二氧化碳还原乙烯(C2H4)生产是解决能源问题和气候危机的有效策略。然而,C2H4有限的催化选择性和高昂的生产成本阻碍了其商业化应用。本文采用非贵金属掺杂策略在气体扩散层(GDL)上原位构建Cu-Ni合金纳米线(Cu-Ni NWs)。ni掺杂调节了Cu的电子环境,显著改善了CO2还原产物的分布。在-1.0 V时,C2H4的法拉第效率达到49.18%,电流密度为290.01 mA cm-2。此外,Cu-Ni NWs在40 h以上表现出显著的催化稳定性。机理研究表明,Ni原子在催化剂表面提供了更多的CO2吸附和活化位点,促进了CO2RR的发生。此外,Ni掺杂显著增强了*CO中间体的吸附,降低了C-C偶联的动力学势垒,使反应优先向C2H4途径发展。这项工作拓展了非贵金属催化剂的设计空间,对开发低成本、高性能的CO2还原电催化剂具有启发意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In Situ Constructed Cu–Ni Alloy Nanowires Enhance the CO2 Electrochemical Conversion of Ethylene

In Situ Constructed Cu–Ni Alloy Nanowires Enhance the CO2 Electrochemical Conversion of Ethylene

Electrocatalysis CO2 reduction for ethylene(C2H4) production based on clean energy is an effective strategy to address energy issues and the climate crisis. However, the limited catalytic selectivity and high production costs of C2H4 hinder its commercial application. Here, we employ a nonprecious metal-doping strategy to in situ construct Cu–Ni alloy nanowires (Cu–Ni NWs) on the gas diffusion layer (GDL). Ni-doping modulated the electronic environment of Cu, significantly improving the product distribution of CO2 reduction. At −1.0 V, the Faradaic efficiency for C2H4 reached 49.18%, with a current density of 290.01 mA cm–2. Furthermore, the Cu–Ni NWs exhibited significant catalytic stability over 40 h. Mechanistic studies indicate that Ni atoms provide more CO2 adsorption and activation sites on the catalyst surface, facilitating the CO2RR. Furthermore, Ni doping significantly enhances the adsorption of the *CO intermediate and lowers the kinetic barrier for C–C coupling, directing the reaction preferentially toward the C2H4 pathway. This work expands the design space for nonprecious metal catalysts, which should be inspiring for the development of low-cost, high-performance CO2 reduction electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信