Bi2S3纳米花中阳离子富集和疏水性的界面协同作用用于高效的酸性CO2电还原。

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Weizhou Wang,Xuhua Zhao,Tian Dong,Yanling Geng,Zexing Wu,Jianping Lai,Bin Li,Hongdong Li,Lei Wang
{"title":"Bi2S3纳米花中阳离子富集和疏水性的界面协同作用用于高效的酸性CO2电还原。","authors":"Weizhou Wang,Xuhua Zhao,Tian Dong,Yanling Geng,Zexing Wu,Jianping Lai,Bin Li,Hongdong Li,Lei Wang","doi":"10.1021/acs.nanolett.5c02622","DOIUrl":null,"url":null,"abstract":"The implementation of acidic CO2 electroreduction (CO2RR) is hindered by catalyst corrosion and the parasitic hydrogen evolution reaction (HER). We construct a hydrophobic hexadecyltrimethoxysilane (HDTMS)-modified Bi2S3 nanoflower catalyst (Bi2S3-C16) synergistically integrating cationic enrichment and interfacial hydrophobicity to achieve stable CO2-to-HCOOH conversion at pH = 2. COMSOL simulations reveal that the high-curvature architecture amplifies local electric fields, driving K+ accumulation to stabilize *OCHO intermediates via dipole interactions. The density functional theory also confirms this, showing a reduced *CO2→*OCHO energy barrier. In situ ATR-FTIR captures *OCHO vibrational modes (1575 cm-1) and HCOOH signatures (1695 cm-1). HDTMS reduces proton accessibility (rotating disc electrode analysis), suppressing HER. Consequently, Bi2S3-C16 achieves 89.6% HCOOH Faradaic efficiency at -400 mA cm-2 with 44.46% cathodic energy efficiency, operating stably for 48 h. This provides a paradigm for interfacial microenvironment control in harsh electrocatalytic systems.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"3 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial Synergy of Cation Enrichment and Hydrophobicity in Bi2S3 Nanoflowers for Efficient Acidic CO2 Electroreduction.\",\"authors\":\"Weizhou Wang,Xuhua Zhao,Tian Dong,Yanling Geng,Zexing Wu,Jianping Lai,Bin Li,Hongdong Li,Lei Wang\",\"doi\":\"10.1021/acs.nanolett.5c02622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The implementation of acidic CO2 electroreduction (CO2RR) is hindered by catalyst corrosion and the parasitic hydrogen evolution reaction (HER). We construct a hydrophobic hexadecyltrimethoxysilane (HDTMS)-modified Bi2S3 nanoflower catalyst (Bi2S3-C16) synergistically integrating cationic enrichment and interfacial hydrophobicity to achieve stable CO2-to-HCOOH conversion at pH = 2. COMSOL simulations reveal that the high-curvature architecture amplifies local electric fields, driving K+ accumulation to stabilize *OCHO intermediates via dipole interactions. The density functional theory also confirms this, showing a reduced *CO2→*OCHO energy barrier. In situ ATR-FTIR captures *OCHO vibrational modes (1575 cm-1) and HCOOH signatures (1695 cm-1). HDTMS reduces proton accessibility (rotating disc electrode analysis), suppressing HER. Consequently, Bi2S3-C16 achieves 89.6% HCOOH Faradaic efficiency at -400 mA cm-2 with 44.46% cathodic energy efficiency, operating stably for 48 h. This provides a paradigm for interfacial microenvironment control in harsh electrocatalytic systems.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c02622\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c02622","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

酸性CO2电还原(CO2RR)的实现受到催化剂腐蚀和寄生析氢反应(HER)的阻碍。我们构建了一种疏水十六烷基三甲氧基硅烷(HDTMS)修饰的Bi2S3纳米花催化剂(Bi2S3- c16),将阳离子富集和界面疏水性协同结合,在pH = 2时实现了稳定的co2 - hcooh转化。COMSOL模拟表明,高曲率结构放大了局部电场,通过偶极子相互作用驱动K+积累以稳定*OCHO中间体。密度泛函理论也证实了这一点,显示出降低的*CO2→*OCHO能量势垒。原位ATR-FTIR捕获*OCHO振动模式(1575 cm-1)和HCOOH特征(1695 cm-1)。HDTMS降低质子可及性(旋转圆盘电极分析),抑制HER。因此,Bi2S3-C16在-400 mA cm-2下达到89.6%的HCOOH法拉第效率,阴极能量效率为44.46%,稳定运行48小时。这为恶劣电催化系统中的界面微环境控制提供了范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interfacial Synergy of Cation Enrichment and Hydrophobicity in Bi2S3 Nanoflowers for Efficient Acidic CO2 Electroreduction.
The implementation of acidic CO2 electroreduction (CO2RR) is hindered by catalyst corrosion and the parasitic hydrogen evolution reaction (HER). We construct a hydrophobic hexadecyltrimethoxysilane (HDTMS)-modified Bi2S3 nanoflower catalyst (Bi2S3-C16) synergistically integrating cationic enrichment and interfacial hydrophobicity to achieve stable CO2-to-HCOOH conversion at pH = 2. COMSOL simulations reveal that the high-curvature architecture amplifies local electric fields, driving K+ accumulation to stabilize *OCHO intermediates via dipole interactions. The density functional theory also confirms this, showing a reduced *CO2→*OCHO energy barrier. In situ ATR-FTIR captures *OCHO vibrational modes (1575 cm-1) and HCOOH signatures (1695 cm-1). HDTMS reduces proton accessibility (rotating disc electrode analysis), suppressing HER. Consequently, Bi2S3-C16 achieves 89.6% HCOOH Faradaic efficiency at -400 mA cm-2 with 44.46% cathodic energy efficiency, operating stably for 48 h. This provides a paradigm for interfacial microenvironment control in harsh electrocatalytic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信