Siting Tang, Francesco Albarelli, Yue Zhang, Shunlong Luo and Matteo G A Paris
{"title":"利用Wehrl熵和Fisher信息量化连续变量量子态的复杂性","authors":"Siting Tang, Francesco Albarelli, Yue Zhang, Shunlong Luo and Matteo G A Paris","doi":"10.1088/2058-9565/ae08df","DOIUrl":null,"url":null,"abstract":"The notion of complexity of quantum states is quite different from uncertainty or information contents, and involves the tradeoff between its classical and quantum features. In this work, we introduce a quantifier of complexity of continuous-variable states, e.g. quantum optical states, based on the Husimi quasiprobability distribution. This quantity is built upon two functions of the state: the Wehrl entropy, capturing the spread of the distribution, and the Fisher information with respect to location parameters, which captures the opposite behavior, i.e. localization in phase space. We analyze the basic properties of the quantifier and illustrate its features by evaluating complexity of Gaussian states and some relevant non-Gaussian states. We further generalize the quantifier in terms of s-ordered phase-space distributions and illustrate its implications.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"66 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying complexity of continuous-variable quantum states via Wehrl entropy and Fisher information\",\"authors\":\"Siting Tang, Francesco Albarelli, Yue Zhang, Shunlong Luo and Matteo G A Paris\",\"doi\":\"10.1088/2058-9565/ae08df\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The notion of complexity of quantum states is quite different from uncertainty or information contents, and involves the tradeoff between its classical and quantum features. In this work, we introduce a quantifier of complexity of continuous-variable states, e.g. quantum optical states, based on the Husimi quasiprobability distribution. This quantity is built upon two functions of the state: the Wehrl entropy, capturing the spread of the distribution, and the Fisher information with respect to location parameters, which captures the opposite behavior, i.e. localization in phase space. We analyze the basic properties of the quantifier and illustrate its features by evaluating complexity of Gaussian states and some relevant non-Gaussian states. We further generalize the quantifier in terms of s-ordered phase-space distributions and illustrate its implications.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ae08df\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ae08df","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantifying complexity of continuous-variable quantum states via Wehrl entropy and Fisher information
The notion of complexity of quantum states is quite different from uncertainty or information contents, and involves the tradeoff between its classical and quantum features. In this work, we introduce a quantifier of complexity of continuous-variable states, e.g. quantum optical states, based on the Husimi quasiprobability distribution. This quantity is built upon two functions of the state: the Wehrl entropy, capturing the spread of the distribution, and the Fisher information with respect to location parameters, which captures the opposite behavior, i.e. localization in phase space. We analyze the basic properties of the quantifier and illustrate its features by evaluating complexity of Gaussian states and some relevant non-Gaussian states. We further generalize the quantifier in terms of s-ordered phase-space distributions and illustrate its implications.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.