{"title":"宏基因组启发文库设计噬菌体M13靶向杀灭革兰氏阴性细菌。","authors":"Yanxi Yang,Dayeon Kang,Beatrice Mihalache,Shelby Vexler,Saumya Jain,Huan Peng,Nasim Annabi,Shangxin Yang,Irene A Chen","doi":"10.1093/nar/gkaf984","DOIUrl":null,"url":null,"abstract":"Given concerning trends in antibiotic resistance, phages have been increasingly explored as promising antimicrobial agents. However, a major problem with phage therapy is the overly high specificity of phages for their hosts, which is currently addressed by a personalized approach involving screening a bank of wild-type phages against each clinical isolate. To shorten this process, we propose that a focused library of synthetic phages could be rapidly selected for a member binding to a given clinical isolate. We created libraries of recombinant M13 phages expressing receptor-binding proteins based on the collective metagenome of inovirus phages, a diverse group whose members appear to infect nearly all bacterial phyla. Using two rounds of a pull-down selection, phage variants were identified against several Gram-negative pathogens, including a variant (M13PAB) that bound to several Pseudomonas aeruginosa strains, including clinical isolates. To confer bactericidal activity to the nonlytic phage, a last-line but nephrotoxic lipopeptide, colistin, was cross-linked to the M13PAB virions. The colistin-M13PAB phage conjugate lowered the minimal inhibitory concentration of colistin by 1-2 orders of magnitude for multiple strains of P. aeruginosa and showed a lack of hemolytic or cytotoxic activity in vitro, suggesting high potency combined with low toxicity. Thus, a metagenome-inspired library displayed on the M13 phage scaffold, when subjected to a short selection for binding to a bacterial clinical isolate, could yield a phage variant that targets the specified strain. This approach may improve the speed, consistency, and cost-effectiveness of personalized phage therapy.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"20 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metagenome-inspired libraries to engineer phage M13 for targeted killing of Gram-negative bacterial species.\",\"authors\":\"Yanxi Yang,Dayeon Kang,Beatrice Mihalache,Shelby Vexler,Saumya Jain,Huan Peng,Nasim Annabi,Shangxin Yang,Irene A Chen\",\"doi\":\"10.1093/nar/gkaf984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given concerning trends in antibiotic resistance, phages have been increasingly explored as promising antimicrobial agents. However, a major problem with phage therapy is the overly high specificity of phages for their hosts, which is currently addressed by a personalized approach involving screening a bank of wild-type phages against each clinical isolate. To shorten this process, we propose that a focused library of synthetic phages could be rapidly selected for a member binding to a given clinical isolate. We created libraries of recombinant M13 phages expressing receptor-binding proteins based on the collective metagenome of inovirus phages, a diverse group whose members appear to infect nearly all bacterial phyla. Using two rounds of a pull-down selection, phage variants were identified against several Gram-negative pathogens, including a variant (M13PAB) that bound to several Pseudomonas aeruginosa strains, including clinical isolates. To confer bactericidal activity to the nonlytic phage, a last-line but nephrotoxic lipopeptide, colistin, was cross-linked to the M13PAB virions. The colistin-M13PAB phage conjugate lowered the minimal inhibitory concentration of colistin by 1-2 orders of magnitude for multiple strains of P. aeruginosa and showed a lack of hemolytic or cytotoxic activity in vitro, suggesting high potency combined with low toxicity. Thus, a metagenome-inspired library displayed on the M13 phage scaffold, when subjected to a short selection for binding to a bacterial clinical isolate, could yield a phage variant that targets the specified strain. This approach may improve the speed, consistency, and cost-effectiveness of personalized phage therapy.\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkaf984\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf984","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Metagenome-inspired libraries to engineer phage M13 for targeted killing of Gram-negative bacterial species.
Given concerning trends in antibiotic resistance, phages have been increasingly explored as promising antimicrobial agents. However, a major problem with phage therapy is the overly high specificity of phages for their hosts, which is currently addressed by a personalized approach involving screening a bank of wild-type phages against each clinical isolate. To shorten this process, we propose that a focused library of synthetic phages could be rapidly selected for a member binding to a given clinical isolate. We created libraries of recombinant M13 phages expressing receptor-binding proteins based on the collective metagenome of inovirus phages, a diverse group whose members appear to infect nearly all bacterial phyla. Using two rounds of a pull-down selection, phage variants were identified against several Gram-negative pathogens, including a variant (M13PAB) that bound to several Pseudomonas aeruginosa strains, including clinical isolates. To confer bactericidal activity to the nonlytic phage, a last-line but nephrotoxic lipopeptide, colistin, was cross-linked to the M13PAB virions. The colistin-M13PAB phage conjugate lowered the minimal inhibitory concentration of colistin by 1-2 orders of magnitude for multiple strains of P. aeruginosa and showed a lack of hemolytic or cytotoxic activity in vitro, suggesting high potency combined with low toxicity. Thus, a metagenome-inspired library displayed on the M13 phage scaffold, when subjected to a short selection for binding to a bacterial clinical isolate, could yield a phage variant that targets the specified strain. This approach may improve the speed, consistency, and cost-effectiveness of personalized phage therapy.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.