海绵铁偶联克服单质硫生物利用度限制增强硝酸盐去除:电子转移和铁氮硫代谢的新视角。

IF 9 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Haohao Miao, Wei Zeng, Mengjia Zhan, Xiaojing Hao, Ruikang Wang, Yongzhen Peng
{"title":"海绵铁偶联克服单质硫生物利用度限制增强硝酸盐去除:电子转移和铁氮硫代谢的新视角。","authors":"Haohao Miao, Wei Zeng, Mengjia Zhan, Xiaojing Hao, Ruikang Wang, Yongzhen Peng","doi":"10.1016/j.biortech.2025.133390","DOIUrl":null,"url":null,"abstract":"<p><p>This study developed a novel sponge iron (sFe<sup>0</sup>) and elemental sulfur (S<sup>0</sup>) coupled autotrophic denitrification biofilter (S<sup>0</sup>-sFe<sup>0</sup>AD). At the ratio Fe<sup>0</sup> to S<sup>0</sup> of 0.5 and a hydraulic retention time of 1.5 h, the system achieved high nitrate and phosphate removal rates of 969.7 mgN·L<sup>-1</sup>·d<sup>-1</sup> and 56.1 mgP·L<sup>-1</sup>·d<sup>-1</sup>, with efficiencies over 98.5 %. Activated biochemical sulfidogenic pathways enabled in situ regeneration of highly bioavailable FeS. This process not only expanded electron donor pool but also reduced sulfate production by facilitating multi-pathway denitrification. Moreover, FeS-mediated direct extracellular electron transfer promoted iron-sulfur redox cycling. Metagenomic analysis further revealed enhanced iron and energy metabolism within the coupled system. The enriched iron-sulfur redox bacteria (Thiobacillus, Desulfurivibrio and Geothrix) and genes (narB, mtrC, sox, fccAB and sir) facilitated the establishment of a self-sustaining iron-sulfur cycle, thereby extending system longevity. This study provides novel insights for developing efficient iron-sulfur coupled autotrophic denitrification technology for sustainable wastewater treatment.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"133390"},"PeriodicalIF":9.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overcoming elemental sulfur bioavailability limitations with sponge iron coupling for enhanced nitrate removal: Novel perspective on electron transfer and iron-nitrogen-sulfur metabolism.\",\"authors\":\"Haohao Miao, Wei Zeng, Mengjia Zhan, Xiaojing Hao, Ruikang Wang, Yongzhen Peng\",\"doi\":\"10.1016/j.biortech.2025.133390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study developed a novel sponge iron (sFe<sup>0</sup>) and elemental sulfur (S<sup>0</sup>) coupled autotrophic denitrification biofilter (S<sup>0</sup>-sFe<sup>0</sup>AD). At the ratio Fe<sup>0</sup> to S<sup>0</sup> of 0.5 and a hydraulic retention time of 1.5 h, the system achieved high nitrate and phosphate removal rates of 969.7 mgN·L<sup>-1</sup>·d<sup>-1</sup> and 56.1 mgP·L<sup>-1</sup>·d<sup>-1</sup>, with efficiencies over 98.5 %. Activated biochemical sulfidogenic pathways enabled in situ regeneration of highly bioavailable FeS. This process not only expanded electron donor pool but also reduced sulfate production by facilitating multi-pathway denitrification. Moreover, FeS-mediated direct extracellular electron transfer promoted iron-sulfur redox cycling. Metagenomic analysis further revealed enhanced iron and energy metabolism within the coupled system. The enriched iron-sulfur redox bacteria (Thiobacillus, Desulfurivibrio and Geothrix) and genes (narB, mtrC, sox, fccAB and sir) facilitated the establishment of a self-sustaining iron-sulfur cycle, thereby extending system longevity. This study provides novel insights for developing efficient iron-sulfur coupled autotrophic denitrification technology for sustainable wastewater treatment.</p>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\" \",\"pages\":\"133390\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biortech.2025.133390\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.133390","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本研究开发了一种新型海绵铁(sFe0)和单质硫(S0)偶联自养反硝化生物滤池(S0- sfe0ad)。在Fe0 / S0为0.5、水力停留时间为1.5 h的条件下,该体系对硝酸盐和磷酸盐的去除率分别为969.7 mgN·L-1·d-1和56.1 mgP·L-1·d-1,效率超过98.5% %。激活的生化产硫途径使高生物利用度的FeS原位再生成为可能。该工艺不仅扩大了电子供体池,而且通过促进多途径反硝化,减少了硫酸盐的产量。此外,fes介导的直接胞外电子转移促进了铁硫氧化还原循环。宏基因组分析进一步揭示了耦合系统中铁和能量代谢的增强。富铁硫氧化还原菌(Thiobacillus、Desulfurivibrio和Geothrix)和基因(narB、mtrC、sox、fccAB和sir)促进了铁硫自我维持循环的建立,从而延长了系统寿命。该研究为开发高效的铁硫耦合自养反硝化技术以实现废水的可持续处理提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overcoming elemental sulfur bioavailability limitations with sponge iron coupling for enhanced nitrate removal: Novel perspective on electron transfer and iron-nitrogen-sulfur metabolism.

This study developed a novel sponge iron (sFe0) and elemental sulfur (S0) coupled autotrophic denitrification biofilter (S0-sFe0AD). At the ratio Fe0 to S0 of 0.5 and a hydraulic retention time of 1.5 h, the system achieved high nitrate and phosphate removal rates of 969.7 mgN·L-1·d-1 and 56.1 mgP·L-1·d-1, with efficiencies over 98.5 %. Activated biochemical sulfidogenic pathways enabled in situ regeneration of highly bioavailable FeS. This process not only expanded electron donor pool but also reduced sulfate production by facilitating multi-pathway denitrification. Moreover, FeS-mediated direct extracellular electron transfer promoted iron-sulfur redox cycling. Metagenomic analysis further revealed enhanced iron and energy metabolism within the coupled system. The enriched iron-sulfur redox bacteria (Thiobacillus, Desulfurivibrio and Geothrix) and genes (narB, mtrC, sox, fccAB and sir) facilitated the establishment of a self-sustaining iron-sulfur cycle, thereby extending system longevity. This study provides novel insights for developing efficient iron-sulfur coupled autotrophic denitrification technology for sustainable wastewater treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信