光伏户外数据的高斯过程回归IV模型

IF 7.6 2区 材料科学 Q1 ENERGY & FUELS
Timon S. Vaas, Bart E. Pieters, Evgenii Sovetkin, Andreas Gerber, Uwe Rau
{"title":"光伏户外数据的高斯过程回归IV模型","authors":"Timon S. Vaas,&nbsp;Bart E. Pieters,&nbsp;Evgenii Sovetkin,&nbsp;Andreas Gerber,&nbsp;Uwe Rau","doi":"10.1002/pip.70012","DOIUrl":null,"url":null,"abstract":"<p>Outdoor data are essential to study the reliability of PV modules and systems. Each electrical performance measure is dependent on the conditions the measurement is conducted at and, therefore, needs to be considered in the context of dynamically changing outdoor conditions. In this paper, we introduce a statistical model designed to analyze PV outdoor data. This model uses a timeseries of current-voltage (<i>IV</i>) characteristics, alongside meteorological data, including plane-of-array irradiance (\n<span></span><math>\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mtext>POA</mtext>\n </mrow>\n </msub></math>) and module temperature (\n<span></span><math>\n <msub>\n <mrow>\n <mi>T</mi>\n </mrow>\n <mrow>\n <mtext>Mod</mtext>\n </mrow>\n </msub></math>). The model aims to utilize all available information to predict the respective performance measure as well as its uncertainty at arbitrary conditions and times. First, to ensure its quality and relevance, a suitable filtering approach is applied to the <i>IV</i> curves, \n<span></span><math>\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mtext>POA</mtext>\n </mrow>\n </msub></math> and \n<span></span><math>\n <msub>\n <mrow>\n <mi>T</mi>\n </mrow>\n <mrow>\n <mtext>Mod</mtext>\n </mrow>\n </msub></math> data from nine modules from five locations (Arizona USA, Germany, India, Italy, and Saudi Arabia) observed for over 2 years. Following this, we utilize the extended solar cell parameters (ESPs), a descriptive model for <i>IV</i> characteristics using 10 parameters. The ESPs, then, undergo a principal component analysis (PCA), which transforms the EPSs into a set of uncorrelated principal components (PCs). Individual Gaussian process regressions (GPRs) are then trained on these principal components (PCs). Once the GPRs are trained, the model is capable of reproducing and predicting the complete <i>IV</i> characteristics at any given time \n<span></span><math>\n <mi>t</mi></math>, for specified values of \n<span></span><math>\n <msub>\n <mrow>\n <mi>G</mi>\n </mrow>\n <mrow>\n <mtext>POA</mtext>\n </mrow>\n </msub></math> and \n<span></span><math>\n <msub>\n <mrow>\n <mi>T</mi>\n </mrow>\n <mrow>\n <mtext>Mod</mtext>\n </mrow>\n </msub></math>. This prediction includes an assessment of its standard deviation, which is derived from data noise and the distance from the observations. This model serves as a versatile tool for various applications, such as analyzing acclimatization effects, degradation trends, seasonal variations, and the performance ratio (PR) of PV modules or systems.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 10","pages":"1093-1108"},"PeriodicalIF":7.6000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.70012","citationCount":"0","resultStr":"{\"title\":\"A Gaussian Process Regression IV Model for PV Outdoor Data\",\"authors\":\"Timon S. Vaas,&nbsp;Bart E. Pieters,&nbsp;Evgenii Sovetkin,&nbsp;Andreas Gerber,&nbsp;Uwe Rau\",\"doi\":\"10.1002/pip.70012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Outdoor data are essential to study the reliability of PV modules and systems. Each electrical performance measure is dependent on the conditions the measurement is conducted at and, therefore, needs to be considered in the context of dynamically changing outdoor conditions. In this paper, we introduce a statistical model designed to analyze PV outdoor data. This model uses a timeseries of current-voltage (<i>IV</i>) characteristics, alongside meteorological data, including plane-of-array irradiance (\\n<span></span><math>\\n <msub>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <mrow>\\n <mtext>POA</mtext>\\n </mrow>\\n </msub></math>) and module temperature (\\n<span></span><math>\\n <msub>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <mrow>\\n <mtext>Mod</mtext>\\n </mrow>\\n </msub></math>). The model aims to utilize all available information to predict the respective performance measure as well as its uncertainty at arbitrary conditions and times. First, to ensure its quality and relevance, a suitable filtering approach is applied to the <i>IV</i> curves, \\n<span></span><math>\\n <msub>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <mrow>\\n <mtext>POA</mtext>\\n </mrow>\\n </msub></math> and \\n<span></span><math>\\n <msub>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <mrow>\\n <mtext>Mod</mtext>\\n </mrow>\\n </msub></math> data from nine modules from five locations (Arizona USA, Germany, India, Italy, and Saudi Arabia) observed for over 2 years. Following this, we utilize the extended solar cell parameters (ESPs), a descriptive model for <i>IV</i> characteristics using 10 parameters. The ESPs, then, undergo a principal component analysis (PCA), which transforms the EPSs into a set of uncorrelated principal components (PCs). Individual Gaussian process regressions (GPRs) are then trained on these principal components (PCs). Once the GPRs are trained, the model is capable of reproducing and predicting the complete <i>IV</i> characteristics at any given time \\n<span></span><math>\\n <mi>t</mi></math>, for specified values of \\n<span></span><math>\\n <msub>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <mrow>\\n <mtext>POA</mtext>\\n </mrow>\\n </msub></math> and \\n<span></span><math>\\n <msub>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <mrow>\\n <mtext>Mod</mtext>\\n </mrow>\\n </msub></math>. This prediction includes an assessment of its standard deviation, which is derived from data noise and the distance from the observations. This model serves as a versatile tool for various applications, such as analyzing acclimatization effects, degradation trends, seasonal variations, and the performance ratio (PR) of PV modules or systems.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"33 10\",\"pages\":\"1093-1108\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.70012\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.70012\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.70012","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

户外数据对于研究光伏组件和系统的可靠性至关重要。每一项电气性能测量都取决于测量所处的条件,因此需要在动态变化的室外条件下进行考虑。本文介绍了一个用于分析光伏户外数据的统计模型。该模型使用电流-电压(IV)特征的时间序列,以及气象数据,包括阵列平面辐照度(gpoa)和模块温度(T Mod)。该模型旨在利用所有可用信息来预测各自的性能指标及其在任意条件和时间下的不确定性。首先,为了确保其质量和相关性,对来自五个地点(美国亚利桑那州,德国,印度,意大利,美国,美国)的九个模块的IV曲线,G POA和T Mod数据应用了合适的过滤方法。和沙特阿拉伯)观察超过2年。在此之后,我们利用扩展太阳能电池参数(ESPs),这是一个使用10个参数的IV特性描述性模型。然后,对esp进行主成分分析(PCA),将esp转换成一组不相关的主成分(pc)。然后在这些主成分(pc)上训练单个高斯过程回归(gpr)。一旦对gpr进行训练,该模型就能够在给定的G POA和t Mod的特定值下再现和预测任何给定时间t的完整IV特征。该预测包括对其标准偏差的评估,该标准偏差来自数据噪声和与观测值的距离。该模型可作为各种应用的通用工具,例如分析适应效应、退化趋势、季节变化以及光伏模块或系统的性能比(PR)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Gaussian Process Regression IV Model for PV Outdoor Data

A Gaussian Process Regression IV Model for PV Outdoor Data

Outdoor data are essential to study the reliability of PV modules and systems. Each electrical performance measure is dependent on the conditions the measurement is conducted at and, therefore, needs to be considered in the context of dynamically changing outdoor conditions. In this paper, we introduce a statistical model designed to analyze PV outdoor data. This model uses a timeseries of current-voltage (IV) characteristics, alongside meteorological data, including plane-of-array irradiance ( G POA ) and module temperature ( T Mod ). The model aims to utilize all available information to predict the respective performance measure as well as its uncertainty at arbitrary conditions and times. First, to ensure its quality and relevance, a suitable filtering approach is applied to the IV curves, G POA and T Mod data from nine modules from five locations (Arizona USA, Germany, India, Italy, and Saudi Arabia) observed for over 2 years. Following this, we utilize the extended solar cell parameters (ESPs), a descriptive model for IV characteristics using 10 parameters. The ESPs, then, undergo a principal component analysis (PCA), which transforms the EPSs into a set of uncorrelated principal components (PCs). Individual Gaussian process regressions (GPRs) are then trained on these principal components (PCs). Once the GPRs are trained, the model is capable of reproducing and predicting the complete IV characteristics at any given time t, for specified values of G POA and T Mod . This prediction includes an assessment of its standard deviation, which is derived from data noise and the distance from the observations. This model serves as a versatile tool for various applications, such as analyzing acclimatization effects, degradation trends, seasonal variations, and the performance ratio (PR) of PV modules or systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信