r2 × T $\mathbb {R}^2\乘以\mathbb {T}$上拟线性波系统小数据光滑解的整体存在性和散射性,[j]

IF 1.2 2区 数学 Q1 MATHEMATICS
Fei Hou, Fei Tao, Huicheng Yin
{"title":"r2 × T $\\mathbb {R}^2\\乘以\\mathbb {T}$上拟线性波系统小数据光滑解的整体存在性和散射性,[j]","authors":"Fei Hou,&nbsp;Fei Tao,&nbsp;Huicheng Yin","doi":"10.1112/jlms.70303","DOIUrl":null,"url":null,"abstract":"<p>In our previous paper [Fei Hou, Fei Tao, Huicheng Yin, Global existence and scattering of small data smooth solutions to a class of quasilinear wave systems on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <mo>×</mo>\n <mi>T</mi>\n </mrow>\n <annotation>$\\mathbb {R}^2\\times \\mathbb {T}$</annotation>\n </semantics></math>, Preprint (2024), arXiv:2405.03242], for the <span></span><math>\n <semantics>\n <msub>\n <mi>Q</mi>\n <mn>0</mn>\n </msub>\n <annotation>$Q_0$</annotation>\n </semantics></math>-type quadratic nonlinearities, we have shown the global well-posedness and scattering properties of small data smooth solutions to the quasilinear wave systems on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <mo>×</mo>\n <mi>T</mi>\n </mrow>\n <annotation>$\\mathbb {R}^2\\times \\mathbb {T}$</annotation>\n </semantics></math>. In this paper, we start to solve the global existence problem for the remaining <span></span><math>\n <semantics>\n <msub>\n <mi>Q</mi>\n <mrow>\n <mi>α</mi>\n <mi>β</mi>\n </mrow>\n </msub>\n <annotation>$Q_{\\alpha \\beta }$</annotation>\n </semantics></math>-type nonlinearities. By combining these results, we have established the global well-posedness of small solutions on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <mo>×</mo>\n <mi>T</mi>\n </mrow>\n <annotation>$\\mathbb {R}^2\\times \\mathbb {T}$</annotation>\n </semantics></math> for the general 3-D quadratically quasilinear wave systems when the related 2-D null conditions are fulfilled.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence and scattering of small data smooth solutions to quasilinear wave systems on \\n \\n \\n \\n R\\n 2\\n \\n ×\\n T\\n \\n $\\\\mathbb {R}^2\\\\times \\\\mathbb {T}$\\n , II\",\"authors\":\"Fei Hou,&nbsp;Fei Tao,&nbsp;Huicheng Yin\",\"doi\":\"10.1112/jlms.70303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In our previous paper [Fei Hou, Fei Tao, Huicheng Yin, Global existence and scattering of small data smooth solutions to a class of quasilinear wave systems on <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>×</mo>\\n <mi>T</mi>\\n </mrow>\\n <annotation>$\\\\mathbb {R}^2\\\\times \\\\mathbb {T}$</annotation>\\n </semantics></math>, Preprint (2024), arXiv:2405.03242], for the <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Q</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$Q_0$</annotation>\\n </semantics></math>-type quadratic nonlinearities, we have shown the global well-posedness and scattering properties of small data smooth solutions to the quasilinear wave systems on <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>×</mo>\\n <mi>T</mi>\\n </mrow>\\n <annotation>$\\\\mathbb {R}^2\\\\times \\\\mathbb {T}$</annotation>\\n </semantics></math>. In this paper, we start to solve the global existence problem for the remaining <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Q</mi>\\n <mrow>\\n <mi>α</mi>\\n <mi>β</mi>\\n </mrow>\\n </msub>\\n <annotation>$Q_{\\\\alpha \\\\beta }$</annotation>\\n </semantics></math>-type nonlinearities. By combining these results, we have established the global well-posedness of small solutions on <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>×</mo>\\n <mi>T</mi>\\n </mrow>\\n <annotation>$\\\\mathbb {R}^2\\\\times \\\\mathbb {T}$</annotation>\\n </semantics></math> for the general 3-D quadratically quasilinear wave systems when the related 2-D null conditions are fulfilled.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 4\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70303\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70303","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在我们之前的论文[侯飞,陶飞,尹慧成,一类拟线性波系统在r2 × T上的小数据光滑解的整体存在性和散射性],$\mathbb {R}^2\times \mathbb {T}$, Preprint (2024), arXiv:2405.03242],对于q0 $Q_0$型二次非线性,我们给出了r2 × T上拟线性波系统小数据光滑解的全局适定性和散射性质$\mathbb {R}^2\times \mathbb {T}$。本文开始求解剩余Q α β $Q_{\alpha \beta }$型非线性的全局存在性问题。结合这些结果,我们建立了一般三维二次拟线性波系统在r2 × T $\mathbb {R}^2\times \mathbb {T}$上,当相关的二维零条件满足时,小解的全局适定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Global existence and scattering of small data smooth solutions to quasilinear wave systems on 
         
            
               
                  R
                  2
               
               ×
               T
            
            $\mathbb {R}^2\times \mathbb {T}$
         , II

Global existence and scattering of small data smooth solutions to quasilinear wave systems on R 2 × T $\mathbb {R}^2\times \mathbb {T}$ , II

In our previous paper [Fei Hou, Fei Tao, Huicheng Yin, Global existence and scattering of small data smooth solutions to a class of quasilinear wave systems on R 2 × T $\mathbb {R}^2\times \mathbb {T}$ , Preprint (2024), arXiv:2405.03242], for the Q 0 $Q_0$ -type quadratic nonlinearities, we have shown the global well-posedness and scattering properties of small data smooth solutions to the quasilinear wave systems on R 2 × T $\mathbb {R}^2\times \mathbb {T}$ . In this paper, we start to solve the global existence problem for the remaining Q α β $Q_{\alpha \beta }$ -type nonlinearities. By combining these results, we have established the global well-posedness of small solutions on R 2 × T $\mathbb {R}^2\times \mathbb {T}$ for the general 3-D quadratically quasilinear wave systems when the related 2-D null conditions are fulfilled.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信