无监督视频异常检测的跨尺度时空记忆增强网络

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Lihu Pan, Bingyi Li, Shouxin Peng, Rui Zhang, Linliang Zhang
{"title":"无监督视频异常检测的跨尺度时空记忆增强网络","authors":"Lihu Pan,&nbsp;Bingyi Li,&nbsp;Shouxin Peng,&nbsp;Rui Zhang,&nbsp;Linliang Zhang","doi":"10.1002/cpe.70315","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Video anomaly detection (VAD), a critical task in intelligent surveillance systems, faces two key challenges: Dynamic behavioral characterization under complex scenarios and robust spatiotemporal context modeling. Existing methods face limitations, such as inadequate cross-scale feature fusion, weak channel-wise dependency modeling, and sensitivity to background noise. To address these issues, we propose a novel multi-scale spatiotemporal feature augmentation framework. Our approach introduces three core innovations: Hierarchical feature pyramid architecture for multi-granularity representation learning, capturing both local motion patterns and global scene semantics; A channel-adaptive attention mechanism that dynamically models long-range spatiotemporal dependencies; A spatiotemporal Gaussian difference module to enhance anomaly response through frequency-domain feature reconstruction, effectively suppressing noise interference. Extensive experiments on UCSD Ped1/2, CUHK Avenue, and ShanghaiTech benchmarks demonstrate that our method achieves state-of-the-art performance, outperforming existing approaches in both accuracy and robustness.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 25-26","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Scale Spatiotemporal Memory-Augmented Network for Unsupervised Video Anomaly Detection\",\"authors\":\"Lihu Pan,&nbsp;Bingyi Li,&nbsp;Shouxin Peng,&nbsp;Rui Zhang,&nbsp;Linliang Zhang\",\"doi\":\"10.1002/cpe.70315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Video anomaly detection (VAD), a critical task in intelligent surveillance systems, faces two key challenges: Dynamic behavioral characterization under complex scenarios and robust spatiotemporal context modeling. Existing methods face limitations, such as inadequate cross-scale feature fusion, weak channel-wise dependency modeling, and sensitivity to background noise. To address these issues, we propose a novel multi-scale spatiotemporal feature augmentation framework. Our approach introduces three core innovations: Hierarchical feature pyramid architecture for multi-granularity representation learning, capturing both local motion patterns and global scene semantics; A channel-adaptive attention mechanism that dynamically models long-range spatiotemporal dependencies; A spatiotemporal Gaussian difference module to enhance anomaly response through frequency-domain feature reconstruction, effectively suppressing noise interference. Extensive experiments on UCSD Ped1/2, CUHK Avenue, and ShanghaiTech benchmarks demonstrate that our method achieves state-of-the-art performance, outperforming existing approaches in both accuracy and robustness.</p>\\n </div>\",\"PeriodicalId\":55214,\"journal\":{\"name\":\"Concurrency and Computation-Practice & Experience\",\"volume\":\"37 25-26\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrency and Computation-Practice & Experience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpe.70315\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.70315","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

视频异常检测(VAD)是智能监控系统中的一项关键任务,它面临着复杂场景下的动态行为表征和鲁棒的时空背景建模两大挑战。现有方法存在一些局限性,如跨尺度特征融合不足、弱通道依赖建模以及对背景噪声敏感等。为了解决这些问题,我们提出了一种新的多尺度时空特征增强框架。我们的方法引入了三个核心创新:用于多粒度表示学习的分层特征金字塔架构,捕获局部运动模式和全局场景语义;一种动态模拟远程时空依赖性的通道自适应注意机制采用时空高斯差分模块,通过频域特征重构增强异常响应,有效抑制噪声干扰。在UCSD Ped1/2、中大大道和上海科技基准测试上进行的大量实验表明,我们的方法达到了最先进的性能,在准确性和稳健性方面都优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cross-Scale Spatiotemporal Memory-Augmented Network for Unsupervised Video Anomaly Detection

Cross-Scale Spatiotemporal Memory-Augmented Network for Unsupervised Video Anomaly Detection

Video anomaly detection (VAD), a critical task in intelligent surveillance systems, faces two key challenges: Dynamic behavioral characterization under complex scenarios and robust spatiotemporal context modeling. Existing methods face limitations, such as inadequate cross-scale feature fusion, weak channel-wise dependency modeling, and sensitivity to background noise. To address these issues, we propose a novel multi-scale spatiotemporal feature augmentation framework. Our approach introduces three core innovations: Hierarchical feature pyramid architecture for multi-granularity representation learning, capturing both local motion patterns and global scene semantics; A channel-adaptive attention mechanism that dynamically models long-range spatiotemporal dependencies; A spatiotemporal Gaussian difference module to enhance anomaly response through frequency-domain feature reconstruction, effectively suppressing noise interference. Extensive experiments on UCSD Ped1/2, CUHK Avenue, and ShanghaiTech benchmarks demonstrate that our method achieves state-of-the-art performance, outperforming existing approaches in both accuracy and robustness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信