Marta Victoria, Zhe Zhang, Gorm B. Andresen, Parisa Rahdan, Ebbe K. Gøtske
{"title":"奥胡斯大学学生和员工建立屋顶光伏系统的经验教训","authors":"Marta Victoria, Zhe Zhang, Gorm B. Andresen, Parisa Rahdan, Ebbe K. Gøtske","doi":"10.1002/pip.70009","DOIUrl":null,"url":null,"abstract":"<p>Energy communities are promoted in the European legislation as a strategy to enable citizen participation in the energy transition. Solar photovoltaic (PV) systems, due to their distributed nature, present an opportunity to create such communities. At Aarhus University (Denmark), we have established an energy community consisting of a 98-kW rooftop solar PV installation, crowdsourced by students, and employees of the university. The participants can buy one or several shares of the installation (which is divided into 900 shares), the electricity is consumed by the university, and the shareowners receive some economic compensation every year. The road to establishing this energy community has been rough, and we have gathered many lessons. In this manuscript, we present the 10 largest challenges which might arise when setting up a university energy community and our particular approach to facing them. Sharing these learnings might pave the way for those willing to establish their own energy community. We also include policy recommendations at the European, national, and municipality levels to facilitate the deployment of energy communities.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 10","pages":"1046-1055"},"PeriodicalIF":7.6000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.70009","citationCount":"0","resultStr":"{\"title\":\"Lessons Learned From Establishing a Rooftop Photovoltaic System Crowdsourced by Students and Employees at Aarhus University\",\"authors\":\"Marta Victoria, Zhe Zhang, Gorm B. Andresen, Parisa Rahdan, Ebbe K. Gøtske\",\"doi\":\"10.1002/pip.70009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Energy communities are promoted in the European legislation as a strategy to enable citizen participation in the energy transition. Solar photovoltaic (PV) systems, due to their distributed nature, present an opportunity to create such communities. At Aarhus University (Denmark), we have established an energy community consisting of a 98-kW rooftop solar PV installation, crowdsourced by students, and employees of the university. The participants can buy one or several shares of the installation (which is divided into 900 shares), the electricity is consumed by the university, and the shareowners receive some economic compensation every year. The road to establishing this energy community has been rough, and we have gathered many lessons. In this manuscript, we present the 10 largest challenges which might arise when setting up a university energy community and our particular approach to facing them. Sharing these learnings might pave the way for those willing to establish their own energy community. We also include policy recommendations at the European, national, and municipality levels to facilitate the deployment of energy communities.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"33 10\",\"pages\":\"1046-1055\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.70009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.70009\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.70009","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Lessons Learned From Establishing a Rooftop Photovoltaic System Crowdsourced by Students and Employees at Aarhus University
Energy communities are promoted in the European legislation as a strategy to enable citizen participation in the energy transition. Solar photovoltaic (PV) systems, due to their distributed nature, present an opportunity to create such communities. At Aarhus University (Denmark), we have established an energy community consisting of a 98-kW rooftop solar PV installation, crowdsourced by students, and employees of the university. The participants can buy one or several shares of the installation (which is divided into 900 shares), the electricity is consumed by the university, and the shareowners receive some economic compensation every year. The road to establishing this energy community has been rough, and we have gathered many lessons. In this manuscript, we present the 10 largest challenges which might arise when setting up a university energy community and our particular approach to facing them. Sharing these learnings might pave the way for those willing to establish their own energy community. We also include policy recommendations at the European, national, and municipality levels to facilitate the deployment of energy communities.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.