活性炭球负载铂-铁氧化物催化剂增强质子交换膜燃料电池性能

IF 3.2 4区 工程技术 Q2 CHEMISTRY, MULTIDISCIPLINARY
Arzu Ekinci, Abdurrahman Akdag, Kaan Büyükkanber, Ömer Şahin
{"title":"活性炭球负载铂-铁氧化物催化剂增强质子交换膜燃料电池性能","authors":"Arzu Ekinci,&nbsp;Abdurrahman Akdag,&nbsp;Kaan Büyükkanber,&nbsp;Ömer Şahin","doi":"10.1007/s11814-025-00516-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the electrochemical performance of Fe<sub>3</sub>O<sub>4</sub>-supported Pt/C catalysts was evaluated in a Proton exchange membrane fuel cell (PEMFC), with a focus on enhancing oxygen reduction reaction (ORR) kinetics. Fe<sub>3</sub>O<sub>4</sub> nanoparticles reduced catalyst particle sizes and improved structural stability. Among the catalysts tested—Pt-Fe<sub>3</sub>O<sub>4</sub> magnetic nanoparticle (MNP)/C, Pt/ Fe<sub>3</sub>O<sub>4</sub> MNP-C, and Pt/ Fe<sub>3</sub>O<sub>4</sub> activated carbon sphere (ACS)-C—the Pt/ Fe<sub>3</sub>O<sub>4</sub> MNP-C variant achieved the highest power density (215 mW/cm<sup>2</sup> at 346 mA/cm<sup>2</sup>) and displayed superior activity. Analytical techniques such as XRD, SEM–EDX, and TEM confirmed the superior crystallinity and phase purity of the Pt/ Fe<sub>3</sub>O<sub>4</sub>-based catalysts. Particle sizes were found to be 3.16 nm, 2.71 nm, and 4.70 nm, respectively, for Pt-Fe<sub>3</sub>O<sub>4</sub> MNP/C, Pt/ Fe<sub>3</sub>O<sub>4</sub> MNP-C, and Pt/Fe<sub>3</sub>O<sub>4</sub> ACS-C. The high ORR activity of Pt/Fe<sub>3</sub>O<sub>4</sub> MNP-C is attributed to the high surface area and conductivity provided by activated carbon spheres, alongside enhanced Pt-Fe<sub>3</sub>O<sub>4</sub> interactions. Mass activities were recorded at 2829, 2307, and 1893 mA/mg<sub>Pt</sub>, with Pt-Fe<sub>3</sub>O<sub>4</sub> MNP/C showing the fastest kinetics and highest efficiency. Pt/ Fe<sub>3</sub>O<sub>4</sub> MNP-C emerges as a promising low-platinum, high-efficiency electrocatalyst for PEMFCs, marking a significant step toward sustainable fuel cell technologies.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"42 12","pages":"2935 - 2950"},"PeriodicalIF":3.2000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Performance of Proton Exchange Membrane Fuel Cells Using Platinum–Iron Oxide Catalysts Supported on Activated Carbon Spheres\",\"authors\":\"Arzu Ekinci,&nbsp;Abdurrahman Akdag,&nbsp;Kaan Büyükkanber,&nbsp;Ömer Şahin\",\"doi\":\"10.1007/s11814-025-00516-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, the electrochemical performance of Fe<sub>3</sub>O<sub>4</sub>-supported Pt/C catalysts was evaluated in a Proton exchange membrane fuel cell (PEMFC), with a focus on enhancing oxygen reduction reaction (ORR) kinetics. Fe<sub>3</sub>O<sub>4</sub> nanoparticles reduced catalyst particle sizes and improved structural stability. Among the catalysts tested—Pt-Fe<sub>3</sub>O<sub>4</sub> magnetic nanoparticle (MNP)/C, Pt/ Fe<sub>3</sub>O<sub>4</sub> MNP-C, and Pt/ Fe<sub>3</sub>O<sub>4</sub> activated carbon sphere (ACS)-C—the Pt/ Fe<sub>3</sub>O<sub>4</sub> MNP-C variant achieved the highest power density (215 mW/cm<sup>2</sup> at 346 mA/cm<sup>2</sup>) and displayed superior activity. Analytical techniques such as XRD, SEM–EDX, and TEM confirmed the superior crystallinity and phase purity of the Pt/ Fe<sub>3</sub>O<sub>4</sub>-based catalysts. Particle sizes were found to be 3.16 nm, 2.71 nm, and 4.70 nm, respectively, for Pt-Fe<sub>3</sub>O<sub>4</sub> MNP/C, Pt/ Fe<sub>3</sub>O<sub>4</sub> MNP-C, and Pt/Fe<sub>3</sub>O<sub>4</sub> ACS-C. The high ORR activity of Pt/Fe<sub>3</sub>O<sub>4</sub> MNP-C is attributed to the high surface area and conductivity provided by activated carbon spheres, alongside enhanced Pt-Fe<sub>3</sub>O<sub>4</sub> interactions. Mass activities were recorded at 2829, 2307, and 1893 mA/mg<sub>Pt</sub>, with Pt-Fe<sub>3</sub>O<sub>4</sub> MNP/C showing the fastest kinetics and highest efficiency. Pt/ Fe<sub>3</sub>O<sub>4</sub> MNP-C emerges as a promising low-platinum, high-efficiency electrocatalyst for PEMFCs, marking a significant step toward sustainable fuel cell technologies.</p></div>\",\"PeriodicalId\":684,\"journal\":{\"name\":\"Korean Journal of Chemical Engineering\",\"volume\":\"42 12\",\"pages\":\"2935 - 2950\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11814-025-00516-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-025-00516-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究在质子交换膜燃料电池(PEMFC)中评估了fe3o4负载Pt/C催化剂的电化学性能,重点研究了氧还原反应(ORR)动力学的增强。纳米Fe3O4减小了催化剂的粒径,提高了催化剂的结构稳定性。在Pt-Fe3O4磁性纳米颗粒(MNP)/C、Pt/ Fe3O4 MNP-C和Pt/ Fe3O4活性炭球(ACS)-C三种催化剂中,Pt/ Fe3O4 MNP-C在346 mA/cm2时的功率密度最高(215 mW/cm2),并表现出优异的活性。XRD、SEM-EDX和TEM等分析技术证实了Pt/ fe3o4基催化剂具有优异的结晶度和相纯度。Pt-Fe3O4 MNP/C、Pt/Fe3O4 MNP-C和Pt/Fe3O4 ACS-C的粒径分别为3.16 nm、2.71 nm和4.70 nm。Pt/Fe3O4 MNP-C的高ORR活性归因于活性炭球提供的高表面积和导电性,以及增强的Pt-Fe3O4相互作用。在2829、2307和1893 mA/mgPt下记录了质量活性,其中Pt-Fe3O4 MNP/C表现出最快的动力学和最高的效率。Pt/ Fe3O4 MNP-C是一种很有前途的低铂、高效的pemfc电催化剂,标志着向可持续燃料电池技术迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Performance of Proton Exchange Membrane Fuel Cells Using Platinum–Iron Oxide Catalysts Supported on Activated Carbon Spheres

In this study, the electrochemical performance of Fe3O4-supported Pt/C catalysts was evaluated in a Proton exchange membrane fuel cell (PEMFC), with a focus on enhancing oxygen reduction reaction (ORR) kinetics. Fe3O4 nanoparticles reduced catalyst particle sizes and improved structural stability. Among the catalysts tested—Pt-Fe3O4 magnetic nanoparticle (MNP)/C, Pt/ Fe3O4 MNP-C, and Pt/ Fe3O4 activated carbon sphere (ACS)-C—the Pt/ Fe3O4 MNP-C variant achieved the highest power density (215 mW/cm2 at 346 mA/cm2) and displayed superior activity. Analytical techniques such as XRD, SEM–EDX, and TEM confirmed the superior crystallinity and phase purity of the Pt/ Fe3O4-based catalysts. Particle sizes were found to be 3.16 nm, 2.71 nm, and 4.70 nm, respectively, for Pt-Fe3O4 MNP/C, Pt/ Fe3O4 MNP-C, and Pt/Fe3O4 ACS-C. The high ORR activity of Pt/Fe3O4 MNP-C is attributed to the high surface area and conductivity provided by activated carbon spheres, alongside enhanced Pt-Fe3O4 interactions. Mass activities were recorded at 2829, 2307, and 1893 mA/mgPt, with Pt-Fe3O4 MNP/C showing the fastest kinetics and highest efficiency. Pt/ Fe3O4 MNP-C emerges as a promising low-platinum, high-efficiency electrocatalyst for PEMFCs, marking a significant step toward sustainable fuel cell technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Korean Journal of Chemical Engineering
Korean Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
4.60
自引率
11.10%
发文量
310
审稿时长
4.7 months
期刊介绍: The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信