高级超声心动图和聚类分析,以识别具有不同风险的继发性三足功能不全的表型群

IF 5.9 2区 医学 Q2 Medicine
Luigi P. Badano , Marco Penso , Michele Tomaselli , Kyu Kim , Alexandra Clement , Noela Radu , Geu-Ru Hong , Diana R. Hădăreanu , Alexandra Buta , Caterina Delcea , Samantha Fisicaro , Gianfranco Parati , Chi Young Shim , Denisa Muraru
{"title":"高级超声心动图和聚类分析,以识别具有不同风险的继发性三足功能不全的表型群","authors":"Luigi P. Badano ,&nbsp;Marco Penso ,&nbsp;Michele Tomaselli ,&nbsp;Kyu Kim ,&nbsp;Alexandra Clement ,&nbsp;Noela Radu ,&nbsp;Geu-Ru Hong ,&nbsp;Diana R. Hădăreanu ,&nbsp;Alexandra Buta ,&nbsp;Caterina Delcea ,&nbsp;Samantha Fisicaro ,&nbsp;Gianfranco Parati ,&nbsp;Chi Young Shim ,&nbsp;Denisa Muraru","doi":"10.1016/j.recesp.2025.02.005","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction and objectives</h3><div>Significant secondary tricuspid regurgitation (STR) is associated with poor prognosis, but its heterogeneity makes predicting patient outcomes challenging. Our objective was to identify STR prognostic phenogroups.</div></div><div><h3>Methods</h3><div>We analyzed 758 patients with moderate-to-severe STR: 558 (74<!--> <!-->±<!--> <!-->14 years, 55% women) in the derivation cohort and 200 (73<!--> <!-->±<!--> <!-->12 years, 60% women) in the external validation cohort. The primary endpoint was a composite of heart failure hospitalization and all-cause mortality.</div></div><div><h3>Results</h3><div>We identified 3 phenogroups. The low-risk phenogroup (2-year event-free survival 80%, 95%<span>C</span>I, 74%-87%) had moderate STR, preserved right ventricular (RV) size and function, and a moderately dilated but normally functioning right atrium. The intermediate-risk phenogroup (HR, 2.20; 95%CI, 1.44-3.37; <em>P</em> <!-->&lt;<!--> <!-->.001) included older patients with severe STR, and a mildly dilated but uncoupled RV. The high-risk phenogroup (HR, 4.67; 95%CI, 3.20-6.82; <em>P</em> <!-->&lt;<!--> <!-->.001) included younger patients with massive-to-torrential tricuspid regurgitation, as well as severely dilated and dysfunctional RV and right atrium. Multivariable analysis confirmed the clustering as independently associated with the composite endpoint (HR, 1.40; 95%CI, 1.13-1.70; <em>P</em> <!-->=<!--> <!-->.002). A supervised machine learning model, developed to assist clinicians in assigning patients to the 3 phenogroups, demonstrated excellent performance both in the derivation cohort (accuracy<!--> <!-->=<!--> <!-->0.91, precision<!--> <!-->=<!--> <!-->0.91, recall<!--> <!-->=<!--> <!-->0.91, and F1 score<!--> <!-->=<!--> <!-->0.91) and in the validation cohort (accuracy<!--> <!-->=<!--> <!-->0.80, precision<!--> <!-->=<!--> <!-->0.78, recall<!--> <!-->=<!--> <!-->0.78, and F1 score<!--> <!-->=<!--> <!-->0.77).</div></div><div><h3>Conclusions</h3><div>The unsupervised cluster analysis identified 3 risk phenogroups, which could assist clinicians in developing more personalized treatment and follow-up strategies for STR patients.</div></div>","PeriodicalId":21299,"journal":{"name":"Revista espanola de cardiologia","volume":"78 10","pages":"Pages 838-847"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ecocardiografía avanzada y análisis de conglomerados para identificar fenogrupos de insuficiencia tricuspídea secundaria con diferente riesgo\",\"authors\":\"Luigi P. Badano ,&nbsp;Marco Penso ,&nbsp;Michele Tomaselli ,&nbsp;Kyu Kim ,&nbsp;Alexandra Clement ,&nbsp;Noela Radu ,&nbsp;Geu-Ru Hong ,&nbsp;Diana R. Hădăreanu ,&nbsp;Alexandra Buta ,&nbsp;Caterina Delcea ,&nbsp;Samantha Fisicaro ,&nbsp;Gianfranco Parati ,&nbsp;Chi Young Shim ,&nbsp;Denisa Muraru\",\"doi\":\"10.1016/j.recesp.2025.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction and objectives</h3><div>Significant secondary tricuspid regurgitation (STR) is associated with poor prognosis, but its heterogeneity makes predicting patient outcomes challenging. Our objective was to identify STR prognostic phenogroups.</div></div><div><h3>Methods</h3><div>We analyzed 758 patients with moderate-to-severe STR: 558 (74<!--> <!-->±<!--> <!-->14 years, 55% women) in the derivation cohort and 200 (73<!--> <!-->±<!--> <!-->12 years, 60% women) in the external validation cohort. The primary endpoint was a composite of heart failure hospitalization and all-cause mortality.</div></div><div><h3>Results</h3><div>We identified 3 phenogroups. The low-risk phenogroup (2-year event-free survival 80%, 95%<span>C</span>I, 74%-87%) had moderate STR, preserved right ventricular (RV) size and function, and a moderately dilated but normally functioning right atrium. The intermediate-risk phenogroup (HR, 2.20; 95%CI, 1.44-3.37; <em>P</em> <!-->&lt;<!--> <!-->.001) included older patients with severe STR, and a mildly dilated but uncoupled RV. The high-risk phenogroup (HR, 4.67; 95%CI, 3.20-6.82; <em>P</em> <!-->&lt;<!--> <!-->.001) included younger patients with massive-to-torrential tricuspid regurgitation, as well as severely dilated and dysfunctional RV and right atrium. Multivariable analysis confirmed the clustering as independently associated with the composite endpoint (HR, 1.40; 95%CI, 1.13-1.70; <em>P</em> <!-->=<!--> <!-->.002). A supervised machine learning model, developed to assist clinicians in assigning patients to the 3 phenogroups, demonstrated excellent performance both in the derivation cohort (accuracy<!--> <!-->=<!--> <!-->0.91, precision<!--> <!-->=<!--> <!-->0.91, recall<!--> <!-->=<!--> <!-->0.91, and F1 score<!--> <!-->=<!--> <!-->0.91) and in the validation cohort (accuracy<!--> <!-->=<!--> <!-->0.80, precision<!--> <!-->=<!--> <!-->0.78, recall<!--> <!-->=<!--> <!-->0.78, and F1 score<!--> <!-->=<!--> <!-->0.77).</div></div><div><h3>Conclusions</h3><div>The unsupervised cluster analysis identified 3 risk phenogroups, which could assist clinicians in developing more personalized treatment and follow-up strategies for STR patients.</div></div>\",\"PeriodicalId\":21299,\"journal\":{\"name\":\"Revista espanola de cardiologia\",\"volume\":\"78 10\",\"pages\":\"Pages 838-847\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista espanola de cardiologia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300893225000727\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista espanola de cardiologia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300893225000727","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

重要的继发性三尖瓣反流(STR)与不良预后相关,但其异质性使得预测患者预后具有挑战性。我们的目的是确定STR预后表型。方法对758例中重度STR患者进行分析:衍生队列558例(74±14岁,55%为女性),外部验证队列200例(73±12岁,60%为女性)。主要终点是心力衰竭住院和全因死亡率的综合。结果共鉴定出3个表型组。低风险表型组(2年无事件生存率80%,95%CI, 74%-87%)有中度STR,保留右心室(RV)大小和功能,中度扩张但功能正常的右心房。中危表型组(HR, 2.20; 95%CI, 1.44-3.37; P < .001)包括严重STR的老年患者和轻度扩张但未耦合的RV。高危表型组(HR, 4.67; 95%CI, 3.20-6.82; P < .001)包括年轻的三尖瓣大量到剧烈反流的患者,以及严重扩张和功能不全的右心室和右心房。多变量分析证实聚类与复合终点独立相关(HR, 1.40; 95%CI, 1.13-1.70; P = 0.002)。为了帮助临床医生将患者分配到3个表型组,开发了一个监督机器学习模型,该模型在衍生队列(准确性= 0.91,精度= 0.91,召回率= 0.91,F1评分= 0.91)和验证队列(准确性= 0.80,精度= 0.78,召回率= 0.78,F1评分= 0.77)中都表现出色。结论无监督聚类分析确定了3个风险表型,有助于临床医生为STR患者制定更个性化的治疗和随访策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ecocardiografía avanzada y análisis de conglomerados para identificar fenogrupos de insuficiencia tricuspídea secundaria con diferente riesgo

Introduction and objectives

Significant secondary tricuspid regurgitation (STR) is associated with poor prognosis, but its heterogeneity makes predicting patient outcomes challenging. Our objective was to identify STR prognostic phenogroups.

Methods

We analyzed 758 patients with moderate-to-severe STR: 558 (74 ± 14 years, 55% women) in the derivation cohort and 200 (73 ± 12 years, 60% women) in the external validation cohort. The primary endpoint was a composite of heart failure hospitalization and all-cause mortality.

Results

We identified 3 phenogroups. The low-risk phenogroup (2-year event-free survival 80%, 95%CI, 74%-87%) had moderate STR, preserved right ventricular (RV) size and function, and a moderately dilated but normally functioning right atrium. The intermediate-risk phenogroup (HR, 2.20; 95%CI, 1.44-3.37; P < .001) included older patients with severe STR, and a mildly dilated but uncoupled RV. The high-risk phenogroup (HR, 4.67; 95%CI, 3.20-6.82; P < .001) included younger patients with massive-to-torrential tricuspid regurgitation, as well as severely dilated and dysfunctional RV and right atrium. Multivariable analysis confirmed the clustering as independently associated with the composite endpoint (HR, 1.40; 95%CI, 1.13-1.70; P = .002). A supervised machine learning model, developed to assist clinicians in assigning patients to the 3 phenogroups, demonstrated excellent performance both in the derivation cohort (accuracy = 0.91, precision = 0.91, recall = 0.91, and F1 score = 0.91) and in the validation cohort (accuracy = 0.80, precision = 0.78, recall = 0.78, and F1 score = 0.77).

Conclusions

The unsupervised cluster analysis identified 3 risk phenogroups, which could assist clinicians in developing more personalized treatment and follow-up strategies for STR patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista espanola de cardiologia
Revista espanola de cardiologia 医学-心血管系统
CiteScore
4.20
自引率
13.60%
发文量
257
审稿时长
28 days
期刊介绍: Revista Española de Cardiología, Revista bilingüe científica internacional, dedicada a las enfermedades cardiovasculares, es la publicación oficial de la Sociedad Española de Cardiología.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信