Hafiz Muhammad , Abdul Quader , H. Bushra Munir , Muhammad Ahmed , Abu Bakar , H. Elhosiny Ali
{"title":"Be2XH6 (X = Co, Ni, Cu)结构、电子、光学、热力学和储氢性能的DFT研究","authors":"Hafiz Muhammad , Abdul Quader , H. Bushra Munir , Muhammad Ahmed , Abu Bakar , H. Elhosiny Ali","doi":"10.1016/j.ijhydene.2025.151703","DOIUrl":null,"url":null,"abstract":"<div><div>First principles calculations are performed to explore structural, electronic, optical, thermodynamical and hydrogen storage properties of Be<sub>2</sub>XH<sub>6</sub> (X = Co, Ni, Cu) double hydride perovskites. The lattice constants of Be<sub>2</sub>CoH<sub>6</sub>, Be<sub>2</sub>NiH<sub>6</sub> and Be<sub>2</sub>CuH<sub>6</sub> are optimized from energy volume curve and noted 5.90 (Å), 5.98 (Å) and 6.14 (Å) respectively. The phonon dispersion curve confirms the dynamic stability of under study double perovskites except Be<sub>2</sub>CuH<sub>6</sub>. The stability is further tested at higher finite temperatures via ab-initio molecular dynamic calculations. The energy band structure shows the existence of no energy difference between valance and conduction band which reflects the metallic nature of double hydride perovskites. The highest static dielectric constant noted for <span><math><mrow><msub><mrow><mi>Be</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>NiH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span>. The under pressure thermodynamic properties reflect that the Debye temperature is reduced with increasing the applied temperature. However, an increase in entropy and specific heat capacities can be noted with the increase of applied temperature. The gravimetric hydrogen storage capacity <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>ω</mi><mi>t</mi></mrow></msub><mtext>%</mtext></mrow></math></span> of <span><math><mrow><msub><mrow><mi>Be</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>CoH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>Be</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>NiH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>Be</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>CuH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> are 6.80%, 6.82% and 6.47% respectively. High stability and large value of gravimetric hydrogen storage capacity makes these materials prominent for utilization in hydrogen storage applications.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"180 ","pages":"Article 151703"},"PeriodicalIF":8.3000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFT study of structural, electronic, optical, thermodynamic and hydrogen storage properties of Be2XH6 (X = Co, Ni, Cu)\",\"authors\":\"Hafiz Muhammad , Abdul Quader , H. Bushra Munir , Muhammad Ahmed , Abu Bakar , H. Elhosiny Ali\",\"doi\":\"10.1016/j.ijhydene.2025.151703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>First principles calculations are performed to explore structural, electronic, optical, thermodynamical and hydrogen storage properties of Be<sub>2</sub>XH<sub>6</sub> (X = Co, Ni, Cu) double hydride perovskites. The lattice constants of Be<sub>2</sub>CoH<sub>6</sub>, Be<sub>2</sub>NiH<sub>6</sub> and Be<sub>2</sub>CuH<sub>6</sub> are optimized from energy volume curve and noted 5.90 (Å), 5.98 (Å) and 6.14 (Å) respectively. The phonon dispersion curve confirms the dynamic stability of under study double perovskites except Be<sub>2</sub>CuH<sub>6</sub>. The stability is further tested at higher finite temperatures via ab-initio molecular dynamic calculations. The energy band structure shows the existence of no energy difference between valance and conduction band which reflects the metallic nature of double hydride perovskites. The highest static dielectric constant noted for <span><math><mrow><msub><mrow><mi>Be</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>NiH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span>. The under pressure thermodynamic properties reflect that the Debye temperature is reduced with increasing the applied temperature. However, an increase in entropy and specific heat capacities can be noted with the increase of applied temperature. The gravimetric hydrogen storage capacity <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>ω</mi><mi>t</mi></mrow></msub><mtext>%</mtext></mrow></math></span> of <span><math><mrow><msub><mrow><mi>Be</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>CoH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>Be</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>NiH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>Be</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>CuH</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> are 6.80%, 6.82% and 6.47% respectively. High stability and large value of gravimetric hydrogen storage capacity makes these materials prominent for utilization in hydrogen storage applications.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"180 \",\"pages\":\"Article 151703\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319925047056\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925047056","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
DFT study of structural, electronic, optical, thermodynamic and hydrogen storage properties of Be2XH6 (X = Co, Ni, Cu)
First principles calculations are performed to explore structural, electronic, optical, thermodynamical and hydrogen storage properties of Be2XH6 (X = Co, Ni, Cu) double hydride perovskites. The lattice constants of Be2CoH6, Be2NiH6 and Be2CuH6 are optimized from energy volume curve and noted 5.90 (Å), 5.98 (Å) and 6.14 (Å) respectively. The phonon dispersion curve confirms the dynamic stability of under study double perovskites except Be2CuH6. The stability is further tested at higher finite temperatures via ab-initio molecular dynamic calculations. The energy band structure shows the existence of no energy difference between valance and conduction band which reflects the metallic nature of double hydride perovskites. The highest static dielectric constant noted for . The under pressure thermodynamic properties reflect that the Debye temperature is reduced with increasing the applied temperature. However, an increase in entropy and specific heat capacities can be noted with the increase of applied temperature. The gravimetric hydrogen storage capacity of , and are 6.80%, 6.82% and 6.47% respectively. High stability and large value of gravimetric hydrogen storage capacity makes these materials prominent for utilization in hydrogen storage applications.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.