Kaidong Han , Tengfei Guo , Fei Meng , Yandong Guo , Xin Shu , Qianping Ran
{"title":"PCE高效减水剂对C3A早期水化过程中结构堆积改性的新认识","authors":"Kaidong Han , Tengfei Guo , Fei Meng , Yandong Guo , Xin Shu , Qianping Ran","doi":"10.1016/j.cemconres.2025.108048","DOIUrl":null,"url":null,"abstract":"<div><div>The much-complicated physical and chemical modification effects induced by PCE pose significant challenges in elucidating the role of C<sub>3</sub>A hydration in structural build-up. The research reveals a two-stage structural build-up in C<sub>3</sub>A-gypsum-CaCO₃ pastes, wherein varying dosages of PCE significantly influence the dynamics. The dominant driving force of structural build-up is the enhancement of colloidal interparticle bonds among bare surfaces. PCE weakens these bonds strength through steric hindrance and reduces the increment of number of these bonds due to its preferential adsorption on surfaces of ettringite formed in the solution. We identify two distinct structural build-up rates: a logarithmic growth rate (<em>G</em><sub>AFt</sub>) associated with the number of bonds between bare surfaces, and a linear growth rate (<em>G</em><sub>thix</sub>) linked to bond strength. As PCE preferentially adsorbs onto C<sub>3</sub>A particles, the reduction in <em>G</em><sub>AFt</sub> occurs more rapidly than that of <em>G</em><sub>thix</sub> with increasing surface coverage, which causes the dominant driving force during the first stage to shift from bond number to bond strength. Consequently, the strengthening of these bonds remains the predominant factor throughout the structural development with escalating PCE dosages, explaining why, at higher PCE levels, a coherent developmental pattern is observable across both stages.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"199 ","pages":"Article 108048"},"PeriodicalIF":13.1000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New insight into structural build-up modification by PCE superplasticizers during early C3A hydration\",\"authors\":\"Kaidong Han , Tengfei Guo , Fei Meng , Yandong Guo , Xin Shu , Qianping Ran\",\"doi\":\"10.1016/j.cemconres.2025.108048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The much-complicated physical and chemical modification effects induced by PCE pose significant challenges in elucidating the role of C<sub>3</sub>A hydration in structural build-up. The research reveals a two-stage structural build-up in C<sub>3</sub>A-gypsum-CaCO₃ pastes, wherein varying dosages of PCE significantly influence the dynamics. The dominant driving force of structural build-up is the enhancement of colloidal interparticle bonds among bare surfaces. PCE weakens these bonds strength through steric hindrance and reduces the increment of number of these bonds due to its preferential adsorption on surfaces of ettringite formed in the solution. We identify two distinct structural build-up rates: a logarithmic growth rate (<em>G</em><sub>AFt</sub>) associated with the number of bonds between bare surfaces, and a linear growth rate (<em>G</em><sub>thix</sub>) linked to bond strength. As PCE preferentially adsorbs onto C<sub>3</sub>A particles, the reduction in <em>G</em><sub>AFt</sub> occurs more rapidly than that of <em>G</em><sub>thix</sub> with increasing surface coverage, which causes the dominant driving force during the first stage to shift from bond number to bond strength. Consequently, the strengthening of these bonds remains the predominant factor throughout the structural development with escalating PCE dosages, explaining why, at higher PCE levels, a coherent developmental pattern is observable across both stages.</div></div>\",\"PeriodicalId\":266,\"journal\":{\"name\":\"Cement and Concrete Research\",\"volume\":\"199 \",\"pages\":\"Article 108048\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008884625002674\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884625002674","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
New insight into structural build-up modification by PCE superplasticizers during early C3A hydration
The much-complicated physical and chemical modification effects induced by PCE pose significant challenges in elucidating the role of C3A hydration in structural build-up. The research reveals a two-stage structural build-up in C3A-gypsum-CaCO₃ pastes, wherein varying dosages of PCE significantly influence the dynamics. The dominant driving force of structural build-up is the enhancement of colloidal interparticle bonds among bare surfaces. PCE weakens these bonds strength through steric hindrance and reduces the increment of number of these bonds due to its preferential adsorption on surfaces of ettringite formed in the solution. We identify two distinct structural build-up rates: a logarithmic growth rate (GAFt) associated with the number of bonds between bare surfaces, and a linear growth rate (Gthix) linked to bond strength. As PCE preferentially adsorbs onto C3A particles, the reduction in GAFt occurs more rapidly than that of Gthix with increasing surface coverage, which causes the dominant driving force during the first stage to shift from bond number to bond strength. Consequently, the strengthening of these bonds remains the predominant factor throughout the structural development with escalating PCE dosages, explaining why, at higher PCE levels, a coherent developmental pattern is observable across both stages.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.