连续体中固有手性等离子体束缚态对质量因子和圆二色性的独立控制

IF 10 1区 物理与天体物理 Q1 OPTICS
Minghao An, Lixiong Lin, Keren Wang, Qi Ding, Yuyu Zhang, Wei Wang, Xiaorui Zheng
{"title":"连续体中固有手性等离子体束缚态对质量因子和圆二色性的独立控制","authors":"Minghao An, Lixiong Lin, Keren Wang, Qi Ding, Yuyu Zhang, Wei Wang, Xiaorui Zheng","doi":"10.1002/lpor.202501707","DOIUrl":null,"url":null,"abstract":"Chiral plasmonic metasurfaces face a fundamental trade‐off between high circular dichroism (CD) and large quality (Q) factors due to radiative losses from asymmetric geometries. Although photonic bound states in the continuum (BICs) can suppress radiative losses to enhance Q‐factors, current plasmonic chiral quasi‐BIC designs remain limited to 2D configurations or infrared regimes, which limits the control over optical chirality and resonance linewidth. Here, 3D symmetry‐broken plasmonic metasurfaces operating in the visible spectrum are introduced, enabled by a nanofabrication breakthrough integrating thermal scanning probe lithography (t‐SPL) and anisotropic etching. This methodology achieves nm‐scale height control in out‐of‐plane architectures, enabling chiral quasi‐BIC resonances with independent tuning of CD (0–0.6) and Q‐factor (10–55)—establishing unprecedented performance benchmarks in chiroptical plasmonic metasurfaces. Crucially, the 3D height asymmetry parameter independently governs CD intensity, while BIC‐engineered symmetry breaking enables precise Q‐factor tuning via radiative loss modulation. Hyperspectral CD mapping reveals that the decoupled control mechanism originates from orthogonalized multipolar interactions between in‐plane lattice modes and out‐of‐plane plasmonic couplings. By resolving long‐standing fabrication challenges in 3D metasurfaces, a universal framework is established for applications demanding concurrent chiral selectivity and ultraconfined fields, including chiral nanolasers, enantioselective nonlinear systems, and quantum emitter interfaces with spin‐photon interactions.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"27 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Independent Control of Quality Factor and Circular Dichroism via Intrinsic Chiral Plasmonic Bound States in the Continuum\",\"authors\":\"Minghao An, Lixiong Lin, Keren Wang, Qi Ding, Yuyu Zhang, Wei Wang, Xiaorui Zheng\",\"doi\":\"10.1002/lpor.202501707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chiral plasmonic metasurfaces face a fundamental trade‐off between high circular dichroism (CD) and large quality (Q) factors due to radiative losses from asymmetric geometries. Although photonic bound states in the continuum (BICs) can suppress radiative losses to enhance Q‐factors, current plasmonic chiral quasi‐BIC designs remain limited to 2D configurations or infrared regimes, which limits the control over optical chirality and resonance linewidth. Here, 3D symmetry‐broken plasmonic metasurfaces operating in the visible spectrum are introduced, enabled by a nanofabrication breakthrough integrating thermal scanning probe lithography (t‐SPL) and anisotropic etching. This methodology achieves nm‐scale height control in out‐of‐plane architectures, enabling chiral quasi‐BIC resonances with independent tuning of CD (0–0.6) and Q‐factor (10–55)—establishing unprecedented performance benchmarks in chiroptical plasmonic metasurfaces. Crucially, the 3D height asymmetry parameter independently governs CD intensity, while BIC‐engineered symmetry breaking enables precise Q‐factor tuning via radiative loss modulation. Hyperspectral CD mapping reveals that the decoupled control mechanism originates from orthogonalized multipolar interactions between in‐plane lattice modes and out‐of‐plane plasmonic couplings. By resolving long‐standing fabrication challenges in 3D metasurfaces, a universal framework is established for applications demanding concurrent chiral selectivity and ultraconfined fields, including chiral nanolasers, enantioselective nonlinear systems, and quantum emitter interfaces with spin‐photon interactions.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202501707\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202501707","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

手性等离子体超表面面临着高圆二色性(CD)和高质量(Q)因子之间的基本权衡,这是由于不对称几何形状的辐射损失造成的。虽然连续介质中的光子束缚态(BIC)可以抑制辐射损耗以提高Q因子,但目前的等离子体手性准BIC设计仍然局限于二维结构或红外区域,这限制了对光学手性和共振线宽的控制。本文通过热扫描探针光刻(t - SPL)和各向异性蚀刻技术的纳米制造突破,介绍了在可见光谱中工作的三维对称破缺等离子体超表面。该方法在面外结构中实现了纳米尺度的高度控制,实现了具有CD(0-0.6)和Q因子(10-55)独立调谐的手性准BIC共振,从而在chirotic等离子体超表面中建立了前所未有的性能基准。至关重要的是,三维高度不对称参数独立控制CD强度,而BIC工程的对称破缺可以通过辐射损耗调制实现精确的Q因子调谐。高光谱CD映射揭示了解耦控制机制源于平面内晶格模式和平面外等离子体耦合之间的正交多极相互作用。通过解决三维超表面长期存在的制造挑战,为需要并发手性选择性和超约束场的应用建立了一个通用框架,包括手性纳米激光器、对映选择非线性系统和具有自旋光子相互作用的量子发射器界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Independent Control of Quality Factor and Circular Dichroism via Intrinsic Chiral Plasmonic Bound States in the Continuum
Chiral plasmonic metasurfaces face a fundamental trade‐off between high circular dichroism (CD) and large quality (Q) factors due to radiative losses from asymmetric geometries. Although photonic bound states in the continuum (BICs) can suppress radiative losses to enhance Q‐factors, current plasmonic chiral quasi‐BIC designs remain limited to 2D configurations or infrared regimes, which limits the control over optical chirality and resonance linewidth. Here, 3D symmetry‐broken plasmonic metasurfaces operating in the visible spectrum are introduced, enabled by a nanofabrication breakthrough integrating thermal scanning probe lithography (t‐SPL) and anisotropic etching. This methodology achieves nm‐scale height control in out‐of‐plane architectures, enabling chiral quasi‐BIC resonances with independent tuning of CD (0–0.6) and Q‐factor (10–55)—establishing unprecedented performance benchmarks in chiroptical plasmonic metasurfaces. Crucially, the 3D height asymmetry parameter independently governs CD intensity, while BIC‐engineered symmetry breaking enables precise Q‐factor tuning via radiative loss modulation. Hyperspectral CD mapping reveals that the decoupled control mechanism originates from orthogonalized multipolar interactions between in‐plane lattice modes and out‐of‐plane plasmonic couplings. By resolving long‐standing fabrication challenges in 3D metasurfaces, a universal framework is established for applications demanding concurrent chiral selectivity and ultraconfined fields, including chiral nanolasers, enantioselective nonlinear systems, and quantum emitter interfaces with spin‐photon interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信