揭示炭疽毒素受体1的磷酸化景观:通过磷蛋白质组学数据整合的机制和功能见解。

IF 1.4
Ayadathil Sujina, Amal Fahma, Suhail Subair, Leona D'cunha, Athira Perunelly Gopalakrishnan, Samseera Ummar, Prathik Basthikoppa Shivamurthy, Poornima Ramesh, Rajesh Raju
{"title":"揭示炭疽毒素受体1的磷酸化景观:通过磷蛋白质组学数据整合的机制和功能见解。","authors":"Ayadathil Sujina, Amal Fahma, Suhail Subair, Leona D'cunha, Athira Perunelly Gopalakrishnan, Samseera Ummar, Prathik Basthikoppa Shivamurthy, Poornima Ramesh, Rajesh Raju","doi":"10.1007/s10930-025-10293-6","DOIUrl":null,"url":null,"abstract":"<p><p>Anthrax Toxin Receptor 1 (ANTXR1) is a transmembrane protein involved in various biological processes, including angiogenesis, cell adhesion, and migration. As a receptor for Bacillus anthracis toxins and the oncolytic Seneca Valley virus, ANTXR1 plays pivotal roles in extracellular matrix interactions, actin cytoskeleton organization, and tumor progression. Despite its relevance in cancer biology, ANTXR1 remains understudied from a phosphoproteomics perspective. In this study, we report the phosphoproteomic landscape of the ANTXR1 protein through a unique data integration strategy from a mass spectrometry-based phosphoproteomics perspective. Through robust statistical analyses, conserved phosphorylation events of ANTXR1 across diverse experimental conditions were linked to its upstream kinases and binary interactors to deduce specific events modulated through ANTXR1 phosphorylation. This computational analysis of curated datasets identified conserved ANTXR1 phosphorylation events along with similar and oppositely co-regulated phosphorylation events of adjunct proteins, revealing extensive regulatory networks of ANTXR1. Our findings provide phosphorylation-dependent interaction between ANTXR1 and FLNA and their upstream kinases and phosphobinding motifs, emphasizing their collective role in cell migration. Overall, the study enhances the integrative analysis of mass spectrometry-based phosphoproteomics data through bioinformatics and statistical approaches.</p>","PeriodicalId":94249,"journal":{"name":"The protein journal","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unravelling the Phosphorylation Landscape of Anthrax Toxin Receptor 1: Mechanisms and Functional Insights Through Phosphoproteomic Data Integration.\",\"authors\":\"Ayadathil Sujina, Amal Fahma, Suhail Subair, Leona D'cunha, Athira Perunelly Gopalakrishnan, Samseera Ummar, Prathik Basthikoppa Shivamurthy, Poornima Ramesh, Rajesh Raju\",\"doi\":\"10.1007/s10930-025-10293-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anthrax Toxin Receptor 1 (ANTXR1) is a transmembrane protein involved in various biological processes, including angiogenesis, cell adhesion, and migration. As a receptor for Bacillus anthracis toxins and the oncolytic Seneca Valley virus, ANTXR1 plays pivotal roles in extracellular matrix interactions, actin cytoskeleton organization, and tumor progression. Despite its relevance in cancer biology, ANTXR1 remains understudied from a phosphoproteomics perspective. In this study, we report the phosphoproteomic landscape of the ANTXR1 protein through a unique data integration strategy from a mass spectrometry-based phosphoproteomics perspective. Through robust statistical analyses, conserved phosphorylation events of ANTXR1 across diverse experimental conditions were linked to its upstream kinases and binary interactors to deduce specific events modulated through ANTXR1 phosphorylation. This computational analysis of curated datasets identified conserved ANTXR1 phosphorylation events along with similar and oppositely co-regulated phosphorylation events of adjunct proteins, revealing extensive regulatory networks of ANTXR1. Our findings provide phosphorylation-dependent interaction between ANTXR1 and FLNA and their upstream kinases and phosphobinding motifs, emphasizing their collective role in cell migration. Overall, the study enhances the integrative analysis of mass spectrometry-based phosphoproteomics data through bioinformatics and statistical approaches.</p>\",\"PeriodicalId\":94249,\"journal\":{\"name\":\"The protein journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The protein journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10930-025-10293-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The protein journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10930-025-10293-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

炭疽毒素受体1 (ANTXR1)是一种跨膜蛋白,参与多种生物过程,包括血管生成、细胞粘附和迁移。作为炭疽芽孢杆菌毒素和溶瘤性塞内卡谷病毒的受体,ANTXR1在细胞外基质相互作用、肌动蛋白细胞骨架组织和肿瘤进展中起关键作用。尽管ANTXR1与癌症生物学相关,但从磷蛋白组学的角度来看,它仍未得到充分的研究。在这项研究中,我们通过一种独特的数据整合策略,从基于质谱的磷蛋白质组学角度报道了ANTXR1蛋白的磷蛋白质组学景观。通过稳健的统计分析,我们将ANTXR1在不同实验条件下的保守磷酸化事件与其上游激酶和二元相互作用物联系起来,推断出通过ANTXR1磷酸化调节的特定事件。通过对精心整理的数据集进行计算分析,确定了保守的ANTXR1磷酸化事件以及类似和相反的辅助蛋白共调控磷酸化事件,揭示了ANTXR1广泛的调控网络。我们的研究结果提供了ANTXR1和FLNA及其上游激酶和磷酸化结合基序之间磷酸化依赖的相互作用,强调了它们在细胞迁移中的集体作用。总体而言,该研究通过生物信息学和统计学方法增强了基于质谱的磷蛋白质组学数据的综合分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unravelling the Phosphorylation Landscape of Anthrax Toxin Receptor 1: Mechanisms and Functional Insights Through Phosphoproteomic Data Integration.

Anthrax Toxin Receptor 1 (ANTXR1) is a transmembrane protein involved in various biological processes, including angiogenesis, cell adhesion, and migration. As a receptor for Bacillus anthracis toxins and the oncolytic Seneca Valley virus, ANTXR1 plays pivotal roles in extracellular matrix interactions, actin cytoskeleton organization, and tumor progression. Despite its relevance in cancer biology, ANTXR1 remains understudied from a phosphoproteomics perspective. In this study, we report the phosphoproteomic landscape of the ANTXR1 protein through a unique data integration strategy from a mass spectrometry-based phosphoproteomics perspective. Through robust statistical analyses, conserved phosphorylation events of ANTXR1 across diverse experimental conditions were linked to its upstream kinases and binary interactors to deduce specific events modulated through ANTXR1 phosphorylation. This computational analysis of curated datasets identified conserved ANTXR1 phosphorylation events along with similar and oppositely co-regulated phosphorylation events of adjunct proteins, revealing extensive regulatory networks of ANTXR1. Our findings provide phosphorylation-dependent interaction between ANTXR1 and FLNA and their upstream kinases and phosphobinding motifs, emphasizing their collective role in cell migration. Overall, the study enhances the integrative analysis of mass spectrometry-based phosphoproteomics data through bioinformatics and statistical approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信