新型猪Teschovirus 2株的分离和鉴定:不完全perk介导的未折叠蛋白反应支持病毒复制

IF 3.5 3区 医学 Q2 VIROLOGY
Viruses-Basel Pub Date : 2025-08-31 DOI:10.3390/v17091200
Xiaoying Feng, Yiyang Du, Yueqing Lv, Xiaofang Wei, Chang Cui, Yibin Qin, Bingxia Lu, Zhongwei Chen, Kang Ouyang, Ying Chen, Zuzhang Wei, Weijian Huang, Ying He, Yifeng Qin
{"title":"新型猪Teschovirus 2株的分离和鉴定:不完全perk介导的未折叠蛋白反应支持病毒复制","authors":"Xiaoying Feng, Yiyang Du, Yueqing Lv, Xiaofang Wei, Chang Cui, Yibin Qin, Bingxia Lu, Zhongwei Chen, Kang Ouyang, Ying Chen, Zuzhang Wei, Weijian Huang, Ying He, Yifeng Qin","doi":"10.3390/v17091200","DOIUrl":null,"url":null,"abstract":"<p><p>Porcine Teschovirus (PTV) is a highly prevalent pathogen within swine populations, primarily associated with encephalitis, diarrhea, pneumonia, and reproductive disorders in pigs, thereby posing a significant threat to the sustainable development of the pig farming industry. In this study, a novel strain of PTV was isolated from the feces of a pig exhibiting symptoms of diarrhea, utilizing PK-15 cell lines. The structural integrity of the viral particles was confirmed via transmission electron microscopy, and the viral growth kinetics and characteristics were evaluated in PK-15 cells. High-throughput sequencing facilitated the acquisition of the complete viral genome, and subsequent phylogenetic analysis and full-genome alignment identified the strain as belonging to the PTV 2 genotype. Further investigation revealed that infection with the PTV-GXLZ2024 strain induces phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α) in PK-15 cells, indicating activation of the unfolded protein response (UPR) through the PERK pathway, with minimal involvement of the IRE1 or ATF6 pathways. Notably, ATF4 protein expression was progressively downregulated throughout the infection, while downstream CHOP protein levels remained unchanged, indicating an incomplete UPR induced by PTV-GXLZ2024. Furthermore, PERK knockdown was found to enhance the replication of PTV-GXLZ2024. This study provides critical insights into the molecular mechanisms underlying PTV pathogenesis and establishes a foundation for future research into its evolutionary dynamics and interactions with host organisms.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"17 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474445/pdf/","citationCount":"0","resultStr":"{\"title\":\"Isolation and Characterization of a Novel Porcine Teschovirus 2 Strain: Incomplete PERK-Mediated Unfolded Protein Response Supports Viral Replication.\",\"authors\":\"Xiaoying Feng, Yiyang Du, Yueqing Lv, Xiaofang Wei, Chang Cui, Yibin Qin, Bingxia Lu, Zhongwei Chen, Kang Ouyang, Ying Chen, Zuzhang Wei, Weijian Huang, Ying He, Yifeng Qin\",\"doi\":\"10.3390/v17091200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Porcine Teschovirus (PTV) is a highly prevalent pathogen within swine populations, primarily associated with encephalitis, diarrhea, pneumonia, and reproductive disorders in pigs, thereby posing a significant threat to the sustainable development of the pig farming industry. In this study, a novel strain of PTV was isolated from the feces of a pig exhibiting symptoms of diarrhea, utilizing PK-15 cell lines. The structural integrity of the viral particles was confirmed via transmission electron microscopy, and the viral growth kinetics and characteristics were evaluated in PK-15 cells. High-throughput sequencing facilitated the acquisition of the complete viral genome, and subsequent phylogenetic analysis and full-genome alignment identified the strain as belonging to the PTV 2 genotype. Further investigation revealed that infection with the PTV-GXLZ2024 strain induces phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α) in PK-15 cells, indicating activation of the unfolded protein response (UPR) through the PERK pathway, with minimal involvement of the IRE1 or ATF6 pathways. Notably, ATF4 protein expression was progressively downregulated throughout the infection, while downstream CHOP protein levels remained unchanged, indicating an incomplete UPR induced by PTV-GXLZ2024. Furthermore, PERK knockdown was found to enhance the replication of PTV-GXLZ2024. This study provides critical insights into the molecular mechanisms underlying PTV pathogenesis and establishes a foundation for future research into its evolutionary dynamics and interactions with host organisms.</p>\",\"PeriodicalId\":49328,\"journal\":{\"name\":\"Viruses-Basel\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474445/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Viruses-Basel\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/v17091200\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v17091200","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

猪Teschovirus (PTV)是一种在猪群中高度流行的病原体,主要与猪的脑炎、腹泻、肺炎和生殖障碍有关,因此对养猪业的可持续发展构成重大威胁。在这项研究中,利用PK-15细胞系从有腹泻症状的猪的粪便中分离出一种新的PTV菌株。通过透射电镜证实了病毒颗粒的结构完整性,并评估了病毒在PK-15细胞中的生长动力学和特性。高通量测序有助于获得完整的病毒基因组,随后的系统发育分析和全基因组比对确定该菌株属于PTV 2基因型。进一步的研究表明,PTV-GXLZ2024菌株感染可诱导PK-15细胞中真核翻译起始因子2α (eIF2α)的磷酸化,表明未折叠蛋白反应(UPR)通过PERK途径激活,IRE1或ATF6途径极少参与。值得注意的是,在整个感染过程中,ATF4蛋白表达逐渐下调,而下游CHOP蛋白表达水平保持不变,表明PTV-GXLZ2024诱导的不完全UPR。此外,PERK敲除被发现可以增强PTV-GXLZ2024的复制。该研究为PTV发病机制的分子机制提供了重要的见解,并为进一步研究其进化动力学和与宿主生物的相互作用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isolation and Characterization of a Novel Porcine Teschovirus 2 Strain: Incomplete PERK-Mediated Unfolded Protein Response Supports Viral Replication.

Porcine Teschovirus (PTV) is a highly prevalent pathogen within swine populations, primarily associated with encephalitis, diarrhea, pneumonia, and reproductive disorders in pigs, thereby posing a significant threat to the sustainable development of the pig farming industry. In this study, a novel strain of PTV was isolated from the feces of a pig exhibiting symptoms of diarrhea, utilizing PK-15 cell lines. The structural integrity of the viral particles was confirmed via transmission electron microscopy, and the viral growth kinetics and characteristics were evaluated in PK-15 cells. High-throughput sequencing facilitated the acquisition of the complete viral genome, and subsequent phylogenetic analysis and full-genome alignment identified the strain as belonging to the PTV 2 genotype. Further investigation revealed that infection with the PTV-GXLZ2024 strain induces phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α) in PK-15 cells, indicating activation of the unfolded protein response (UPR) through the PERK pathway, with minimal involvement of the IRE1 or ATF6 pathways. Notably, ATF4 protein expression was progressively downregulated throughout the infection, while downstream CHOP protein levels remained unchanged, indicating an incomplete UPR induced by PTV-GXLZ2024. Furthermore, PERK knockdown was found to enhance the replication of PTV-GXLZ2024. This study provides critical insights into the molecular mechanisms underlying PTV pathogenesis and establishes a foundation for future research into its evolutionary dynamics and interactions with host organisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Viruses-Basel
Viruses-Basel VIROLOGY-
CiteScore
7.30
自引率
12.80%
发文量
2445
审稿时长
1 months
期刊介绍: Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信