Luana Raposo de Melo Moraes Aps, Aléxia Adrianne Venceslau-Carvalho, Carla Longo de Freitas, Bruna Felício Milazzotto Maldonado Porchia, Mariângela de Oliveira Silva, Lennon Ramos Pereira, Natiely Silva Sales, Guilherme Formoso Pelegrin, Ethiane Segabinazi, Karine Bitencourt Rodrigues, Jamile Ramos da Silva, Bianca da Silva Almeida, Jéssica Pires Farias, Maria Fernanda Castro-Amarante, Paola Marcella Camargo Minoprio, Luís Carlos de Souza Ferreira, Rúbens Prince Dos Santos Alves
{"title":"基于t细胞表位的SARS-CoV-2 DNA疫苗编码1型单纯疱疹病毒糖蛋白D (gD)融合抗原","authors":"Luana Raposo de Melo Moraes Aps, Aléxia Adrianne Venceslau-Carvalho, Carla Longo de Freitas, Bruna Felício Milazzotto Maldonado Porchia, Mariângela de Oliveira Silva, Lennon Ramos Pereira, Natiely Silva Sales, Guilherme Formoso Pelegrin, Ethiane Segabinazi, Karine Bitencourt Rodrigues, Jamile Ramos da Silva, Bianca da Silva Almeida, Jéssica Pires Farias, Maria Fernanda Castro-Amarante, Paola Marcella Camargo Minoprio, Luís Carlos de Souza Ferreira, Rúbens Prince Dos Santos Alves","doi":"10.3390/v17091191","DOIUrl":null,"url":null,"abstract":"<p><p>Authorized SARS-CoV-2 vaccines elicit both antibody and T-cell responses; however, benchmark correlates and update decisions have largely emphasized neutralizing antibodies. Motivated by the complementary role of cellular immunity, we designed a prototype polyepitope DNA vaccine encoding conserved human and mouse T-cell epitopes from non-structural proteins of the original strain SARS-CoV-2 lineage. Epitope selection was guided by in silico predictions for common HLA class I alleles in the Brazilian population and the mouse H-2Kb haplotype. To enhance immunogenicity, the polyepitope sequences were fused to glycoprotein D (gD) from Herpes Simplex Virus 1 (HSV-1), an immune activator of dendritic cells (DCs), leading to enhanced activation of antigen-specific T-cell responses. Mice were immunized with two doses of the electroporated DNA vaccine encoding the gD-fused polyepitope, which induced robust interferon-gamma- and tumor necrosis factor-alpha-producing T cell responses compared to control mice. In addition, K18-hACE2 transgenic mice showed protection against intranasal challenge with the original SARS-CoV-2 strain, with reduced clinical symptoms, less weight loss, and decreased viral burden in both lung and brain tissues. The results experimentally confirm the protective role of T cells in vaccine-induced protection against SARS-CoV-2 and open perspectives for the development of universal anti-coronavirus vaccines.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"17 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474356/pdf/","citationCount":"0","resultStr":"{\"title\":\"T-Cell Epitope-Based SARS-CoV-2 DNA Vaccine Encoding an Antigen Fused with Type 1 Herpes Simplex Virus Glycoprotein D (gD).\",\"authors\":\"Luana Raposo de Melo Moraes Aps, Aléxia Adrianne Venceslau-Carvalho, Carla Longo de Freitas, Bruna Felício Milazzotto Maldonado Porchia, Mariângela de Oliveira Silva, Lennon Ramos Pereira, Natiely Silva Sales, Guilherme Formoso Pelegrin, Ethiane Segabinazi, Karine Bitencourt Rodrigues, Jamile Ramos da Silva, Bianca da Silva Almeida, Jéssica Pires Farias, Maria Fernanda Castro-Amarante, Paola Marcella Camargo Minoprio, Luís Carlos de Souza Ferreira, Rúbens Prince Dos Santos Alves\",\"doi\":\"10.3390/v17091191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Authorized SARS-CoV-2 vaccines elicit both antibody and T-cell responses; however, benchmark correlates and update decisions have largely emphasized neutralizing antibodies. Motivated by the complementary role of cellular immunity, we designed a prototype polyepitope DNA vaccine encoding conserved human and mouse T-cell epitopes from non-structural proteins of the original strain SARS-CoV-2 lineage. Epitope selection was guided by in silico predictions for common HLA class I alleles in the Brazilian population and the mouse H-2Kb haplotype. To enhance immunogenicity, the polyepitope sequences were fused to glycoprotein D (gD) from Herpes Simplex Virus 1 (HSV-1), an immune activator of dendritic cells (DCs), leading to enhanced activation of antigen-specific T-cell responses. Mice were immunized with two doses of the electroporated DNA vaccine encoding the gD-fused polyepitope, which induced robust interferon-gamma- and tumor necrosis factor-alpha-producing T cell responses compared to control mice. In addition, K18-hACE2 transgenic mice showed protection against intranasal challenge with the original SARS-CoV-2 strain, with reduced clinical symptoms, less weight loss, and decreased viral burden in both lung and brain tissues. The results experimentally confirm the protective role of T cells in vaccine-induced protection against SARS-CoV-2 and open perspectives for the development of universal anti-coronavirus vaccines.</p>\",\"PeriodicalId\":49328,\"journal\":{\"name\":\"Viruses-Basel\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474356/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Viruses-Basel\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/v17091191\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v17091191","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
T-Cell Epitope-Based SARS-CoV-2 DNA Vaccine Encoding an Antigen Fused with Type 1 Herpes Simplex Virus Glycoprotein D (gD).
Authorized SARS-CoV-2 vaccines elicit both antibody and T-cell responses; however, benchmark correlates and update decisions have largely emphasized neutralizing antibodies. Motivated by the complementary role of cellular immunity, we designed a prototype polyepitope DNA vaccine encoding conserved human and mouse T-cell epitopes from non-structural proteins of the original strain SARS-CoV-2 lineage. Epitope selection was guided by in silico predictions for common HLA class I alleles in the Brazilian population and the mouse H-2Kb haplotype. To enhance immunogenicity, the polyepitope sequences were fused to glycoprotein D (gD) from Herpes Simplex Virus 1 (HSV-1), an immune activator of dendritic cells (DCs), leading to enhanced activation of antigen-specific T-cell responses. Mice were immunized with two doses of the electroporated DNA vaccine encoding the gD-fused polyepitope, which induced robust interferon-gamma- and tumor necrosis factor-alpha-producing T cell responses compared to control mice. In addition, K18-hACE2 transgenic mice showed protection against intranasal challenge with the original SARS-CoV-2 strain, with reduced clinical symptoms, less weight loss, and decreased viral burden in both lung and brain tissues. The results experimentally confirm the protective role of T cells in vaccine-induced protection against SARS-CoV-2 and open perspectives for the development of universal anti-coronavirus vaccines.
期刊介绍:
Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.